Given Information:
Initial speed of rock = vi = 30 m/s
escape speed of the asteroid = ve = 24 m/s
Required Information:
final speed of rock = vf = ?
Answer:
vf = 18 m/s
Explanation:
As we know from the conservation of energy
KEf + Uf = KEi + Ui
Where KE is the kinetic energy and U is the potential energy
0 + 0 = ½mve² - GMm/R
When escape speed is used, KEf is zero due to vf being zero. Uf is zero because the object is very far away from mass M, therefore, the equation becomes
GMm/R = ½mve²
m cancels out
GM/R = ½ve²
GM/R = ½(24)²
GM/R = 288
KEf + Uf = KEi + Ui
½mvi² + 0 = ½vf² - GMm/R
m cancels out
½vi² = ½vf² - GM/R
Substitute the values
½(30)² = ½vf² - (288)
½vf² = 450 - 288
vf² = 2(162)
vf = √324
vf = 18 m/s
Therefore, the final speed of the rock is 18 m/s
Answer:
opposite direction
Explanation:
An electric field is defined as a physical field which surrounds the electrically charged particles that exerts force on the other particles on the field.
Now when an electron or a negatively charged particle enters a uniform electric field, the electric forces acts on the negatively charged particles and it forces the particle to move in the direction which is opposite to the direction of the field. In an uniform electric field, the field lines are parallel.
The answer to this question is D
when velocity and time both are constant and when velocity will decrease the acceleration will be negative
The best system to talk about would be a galaxy system. Energy does not enter the galaxy, but it does "recycle" its energy. For instance, when the life of a star comes to its end, it can go super nova. and all the energy from that star is then released back into the galaxy to form nebula's and then eventually into other stars. The energy inside of a galaxy can change frequently. It can be in the form of heat from a star, or it can change into gamma radiation from an explosion. Gases like helium and hydrogen come together and form a ball of gas creating the heat. Then the heat is dispersed leaving different types of radiation like gamma, ultra-violet, microwave, and infrared. Energy can leave a system by the local black holes. Black holes with shoot out Hawking radiation is when the black hole disperses its own energy out into space, also known as Black Hole Evaporation<span>. The energy from that black hole is then dispersed into the rest of the universe or possibly back into the galaxy from which it came from. </span>