Given that,
Mass of trackler, m₁ = 100 kg
Speed of trackler, u₁ = 2.6 m/s
Mass of halfback, m₂ = 92 kg
Speed of halfback, u₂ = -5 m/s (direction is opposite)
To find,
Mutual speed immediately after the collision.
Solution,
The momentum of the system remains conserved in this case. Let v is the mutual speed after the collision. Using conservation of momentum as :

So, the mutual speed immediately after the collision is 1.04 m/s but in opposite direction.
A star's temperature is most likely indicated by the color of it. The hotter the star, the bluer it is. The colder the star, the redder it is.
Answer:
(a) F = 320
(b) = F = -5.1625
Explanation:
The formula that converts degree Celsius (C) to degree Fahrenheit (F) is:
F = 1.8C + 32
Solving (a): F = 2C
Substitute 2C for F in the above equation
F = 1.8C + 32
2C = 1.8C + 32
Collect like terms
2C - 1.8C = 32
0.2C = 32
Multiply both sides by 5
5 * 0.2C = 32 * 5
C = 160
Recall that F = 2C
F = 2 * 160
F = 320
Solving (b): F = ¼C
Substitute ¼C for F in the above formula
F = 1.8C + 32
¼C = 1.8C + 32
Convert fraction to decimal
0.25C = 1.8C + 32
Collect like terms
0.25C - 1.8C = 32
-1.55C = 32
Divide both sides by -1.55
C = 32/(-1.55)
C = -32/1.55
C = -20.65
Recall that: F = ¼C
F = -¼ * 20.65
F = -5.1625
just search up the answer/ definition to all of them, rephrase into own words, then do the same for examples.
The free-body diagram of the forces acting on the flag is in the picture in attachment.
We have: the weight, downward, with magnitude

the force of the wind F, acting horizontally, with intensity

and the tension T of the rope. To write the conditions of equilibrium, we must decompose T on both x- and y-axis (x-axis is taken horizontally whil y-axis is taken vertically):


By dividing the second equation by the first one, we get

From which we find

which is the angle of the rope with respect to the horizontal.
By replacing this value into the first equation, we can also find the tension of the rope: