The purpose of the scapula to move during arm elevation is increase the range of elevation of the arm.
<h3>What is the importance of movement of the scapula during arm elevation?</h3>
The scapula is an important bone which is found in the shoulder and back region of the body.
The scapula enables and increases the range of motion of the arm with its motions.
During arm elevation, the scapula undergoes an upward rotational motion.
Therefore, the purpose of the scapula to move during arm elevation is increase the range of elevation of the arm.
Learn more about scapula motion at: brainly.com/question/5133017
#SPJ12
The inner planets are rocky because The warm temperatures in the inner disk caused the inner planetesimals to be formed of mostly rocky material.
What are rocky planets?
- Rocky planets are the planet in which constituents are mostly silicate rocks or metal. They are also regarded as a planet with a solid surface.
- The formation of rocky planets is said to have occurred billions of years ago and its process of formation is termed accretion. Through accretion are its constituents formed as the more it goes bigger, the higher the rising temperature and pressure in its core and the elements which have to undergo accreted heat up, melt, and spread. Through this process, heavier elements go deeper into the core of the planet and lighter elements float toward the surface.
- In the formation of rocky planets, the inner portions of the disk are said to be warm from the protostar thereby resulting in the production of the heavy elements that stay there.
- Examples of rocky planets are Earth or Mars
Hence, from the above, we can say that,
The warm temperatures in the inner disk caused the inner planetesimals to be formed of mostly rocky material.
Here,
Option A is correct.
Learn more about rocky planets here:
<u>brainly.com/question/22392798</u>
#SPJ4
Answer:
A the type of dog food because it was different and every other thing was the same.
Given the equation for the Speed of a Satellite
v = SqRt{Gravitational Constant}{Mass of Earth} divided by the radius given in your problem
we have:
(square root whole term on right side)
v = G Me
———
r
so. (6.67x10^-11)(5.97x10^24)
___________________
(8.0x10^6)
v = 7055 m/s (which is reasonable)
so utilize the Kinetic Energy Formula
KE = 1/2mv^2
KE = 1/2(200)(7055)^2
KE = 4.977x10^9 J
Answer:
v = 0.41 m/s
Explanation:
- In this case, the change in the mechanical energy, is equal to the work done by the fricition force on the block.
- At any point, the total mechanical energy is the sum of the kinetic energy plus the elastic potential energy.
- So, we can write the following general equation, taking the initial and final values of the energies:

- Since the block and spring start at rest, the change in the kinetic energy is just the final kinetic energy value, Kf.
- ⇒ Kf = 1/2*m*vf² (2)
- The change in the potential energy, can be written as follows:

where k = force constant = 815 N/m
xf = final displacement of the block = 0.01 m (taking as x=0 the position
for the spring at equilibrium)
x₀ = initial displacement of the block = 0.03 m
- Regarding the work done by the force of friction, it can be written as follows:

where μk = coefficient of kinettic friction, Fn = normal force, and Δx =
horizontal displacement.
- Since the surface is horizontal, and no acceleration is present in the vertical direction, the normal force must be equal and opposite to the force due to gravity, Fg:
- Fn = Fg= m*g (5)
- Replacing (5) in (4), and (3) and (4) in (1), and rearranging, we get:


- Replacing by the values of m, k, g, xf and x₀, in (7) and solving for v, we finally get:
