Refer to the figure shown below.
Let m₁ and m₂ e the two masses.
Let a = the acceleration.
Let T = tension over the frictionless pulley.
Write the equations of motion.
m₂g - T = m₂a (1)
T - m₁g = m₁a (2)
Add equations (1) and (2).
m₂g - T + T - m₁g = (m₁ + m₂)a
(m₂ - m₁)g = (m₁ + m₂)a
Divide through by m₁.
(m₂/m₁ - 1)g = (1 + m₂/m₁)a
Define r = m₂/m₁ as the ratio of the two masses. Then
(r - 1)g = (1 +r)a
r(g-a) = a + g
r = (g - a)/(g + a)
With = 2 ft/s from rest, the acceleration is
a = 2/32.2 = 0.062 ft/s²
Therefore
r = (32.2 - 0.062)/(32.2 + 0.062) = 0.9962
Answer:
The ratio of masses is 0.9962 (heavier mass divided by the lighter mass).
Answer:
Since the area of the perfect square is 11650, and all of a squares sides ar equal, we just need to find the square root.
The square root of 11650 is 107.935166.
One side of the square is 107.935166
107.935166 x 107.935166 = 11650
(っ◔◡◔)っ ♥ Hope It Helps ♥
Yes,and because not everyone can wink and often that someone can only wink with one eye only
Answer:
The maximum torque in the coil is
.
Explanation:
Given that,
Number of turns in the circular coil, N = 50
Radius of coil, r = 5 cm
Magnetic field, B = 0.5 T
Current in coil, I = 25 mA
We need to find the magnitude of the maximum possible torque exerted on the coil. The magnetic torque is given by :

For maximum torque, 

So, the maximum torque in the coil is
.
By definition we have that
force=dP/dt,
where
p is momentum
so
<span>momentum is force*time
p= 15*3 = 45 Ns , west.
</span><span>the change in momentum of the object is 45 N.s</span>