B precipitation,condensation,precipitation
Answer:
The new velocity of the string is 100 centimeters per second (1 meter per second).
Explanation:
The speed of a wave through a string (
), in meters per second, is defined by the following formula:
(1)
Where:
- Tension, in newtons.
- Length of the string, in meters.
- Mass of the string, in kilograms.
The expression for initial and final speeds of the wave are:
Initial speed
(2)
Final speed

(3)
By (2), we conclude that:
If we know that
, then the new speed of the wave in the string is
.
The both have the unit (J) for Jules
<span>The centripetal force for such an arrangement can be found through the equation Fc = mv^2/r where m is the mass of the rotating object, v is that object's velocity, and r is the radius of rotation. In this case, we know that the maximum Fc that can be tolerated by the cord is 64N. Thus we set the equation up and solve for the value of v for which Fc = 64.
64 = 0.4*(v^2)/1
64/0.4 = 160 =
v^2
v = sqrt(160) = 12.65 m/s
At any speed faster than 12.65 m/s, the cord will break.</span>
A.900 watts That would be your correct answer