“Charged objects have an imbalance of charge - either more negative electrons than positive protons or vice versa. And neutral objects have a balance of charge - equal numbers of protons and electrons. The principle stated earlier for atoms can be applied to objects. Objects with more electrons than protons are charged negatively; objects with fewer electrons than protons are charged positively.
In this discussion of electrically charged versus electrically neutral objects, the neutron has been neglected. Neutrons, being electrically neutral play no role in this unit. Their presence (or absence) will have no direct bearing upon whether an object is charged or uncharged. Their role in the atom is merely to provide stability to the nucleus.”
Hope this helps a bit.
!! (Credits to The Psychics Classroom) !!
Answer:
0.911 atm
Explanation:
In this problem, there is no change in volume of the gas, since the container is sealed.
Therefore, we can apply Gay-Lussac's law, which states that:
"For a fixed mass of an ideal gas kept at constant volume, the pressure of the gas is proportional to its absolute temperature"
Mathematically:

where
p is the gas pressure
T is the absolute temperature
For a gas undergoing a transformation, the law can be rewritten as:

where in this problem:
is the initial pressure of the gas
is the initial absolute temperature of the gas
is the final temperature of the gas
Solving for p2, we find the final pressure of the gas:

Answer:
Cytokines
Explanation:
Cytokines are known as inflammatory molecules which are also proteinous and aid signaling of certain processes and conditions in the body.
They are also normally involved in aiding muscle building and are released when muscles experience microscopic damage which may lead to the muscles being sore.
-reflection and refraction of light
-dispersion of light
-absorption of light
-polarization of light
For t1:
t1 = square root of 2h1 / g = square root of 2 * 0.5 / 9.8 = 0.319 sec
For t2:
t2 = sqaure root of 2h2 / g = square root of 2 * 1.0 / 9.8 = 0.451 sec
Wherein:
t = time(s) for the vertical movement
h= height
g = gravity (using the standard 9.8 m/sec measurement)
d1 = 1*0.319 = 0.319 m
d2 = 0.5 * 0.451 = 0.225 m
Where:
d = hor. distance
ratio = d1:d2
= 0.319 : 0.225
=3.19 : 2.25
The answer is 3.19 : 2.25