Answer:Image will be located at 2F on the other side of the lens.
Explanation:
Explanation:
As we know that
time = distance/speed
The time used for firs half of the trip was
(1 mi)(12 mi/hour) = 1/12 hours = 5 minutes
The last half of the trip will took 10 minutes, 1/6 hour.
Speed = distance/ time
(1 mil) = (1/6h) = 6 mil/h
so the speed for last half of the trip was = 6mph
the average speed was
(2mil)(1/4 hour) = 8 mil/hour
So the ling's average speed was 8mph.
Answer:
1.7 × 10^11 Pa
Explanation:
Please see the attachments below
Answer:
0.167m/s
Explanation:
According to law of conservation of momentum which States that the sum of momentum of bodies before collision is equal to the sum of the bodies after collision. The bodies move with a common velocity after collision.
Given momentum = Maas × velocity.
Momentum of glider A = 1kg×1m/s
Momentum of glider = 1kgm/s
Momentum of glider B = 5kg × 0m/s
The initial velocity of glider B is zero since it is at rest.
Momentum of glider B = 0kgm/s
Momentum of the bodies after collision = (mA+mB)v where;
mA and mB are the masses of the gliders
v is their common velocity after collision.
Momentum = (1+5)v
Momentum after collision = 6v
According to the law of conservation of momentum;
1kgm/s + 0kgm/s = 6v
1 =6v
V =1/6m/s
Their speed after collision will be 0.167m/s
It's false. Mass is a way of measuring how much matter an object contains, where as weight measures how hard gravity is pulling on an object. While on earth, these are typically interchangeable. However, if you were to go to Mars, your mass would stay the same, but the weight will be different. This is because you still contain the same amount of matter, but the gravity's pull will be different because the moon has a different gravitational pull than the earth. Hope this helps!