Let s = rate of rotation
<span>Let r = radius of earth = 6,400km </span>
<span>Then solving (s^2) r = g will give the desired rate, from which length of day is inferred. </span>
<span>People would not be thrown off. They would simply move eastward in a straight line while the curved surface of earth fell away from beneath them.</span>
Answer:
160000000 kg.
Explanation:
p=mv
p=1.6x10^9
v=10m/s
rearrange and substitute:
(1.6x10^9)=m(10)
m=(1.6x10^9)/10
m= 1.6x10^8 kg.
Answer:
a) Explanation below. b) Explanation below
Explanation:
Torque is defined as the product of a force by a radius, while momentum is defined as the product of force by a distance. Mathematically we would have
T = F * r
M = F * d
where:
T = torque = [N*m]
M = moment = [N*m]
F = force =[N]
d = distance [m]
r = radius [m]
Although they have the same units, the difference between them is the application. For the case of torque this is always applied in parts that are in rotation, such as the shafts of cars, the shafts of pumps, torque in gears and etc. While the moment can be applied to a body without the need for it to rotate.
A couple, is as its name suggests a couple of forces of equal magnitude but opposite sense and do not share a line of action. A body under the action of a couple of forces tends to rotate the body without moving it from one point to another.
The force constant of the spring is determined as 14,222.2 N/m.
<h3>Force constant of the spring</h3>
Apply the principle of conservation of energy,
K.E = U
where;
- K.E kinetic energy of the elevator
- U is elastic potential energy of the spring
¹/₂mv² = ¹/₂kx²
mv² = kx²
k = mv²/x²
Where;
- m is mass of the elevator
- v is speed
- x is compression of the spring
k = (2000 x 8²)/(3²)
k = 14,222.2 N/m
Thus, the force constant of the spring is determined as 14,222.2 N/m.
Learn more about force constant here: brainly.com/question/1968517
#SPJ1
It would be A they model all of earths surfaces because that’s why it was made it was to show the world in a smaller form.