Answer:
v₂ = 0.56 m / s
Explanation:
This exercise can be done using Bernoulli's equation
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
Where points 1 and 2 are on the surface of the glass and the top of the straw
The pressure at the two points is the same because they are open to the atmosphere, if we assume that the surface of the vessel is much sea that the area of the straw the velocity of the surface of the vessel is almost zero v₁ = 0
The difference in height between the level of the glass and the straw is constant and equal to 1.6 cm = 1.6 10⁻² m
We substitute in the equation
+ ρ g y₁ =
+ ½ ρ v₂² + ρ g y₂
½ v₂² = g (y₂-y₁)
v₂ = √ 2 g (y₂-y₁)
Let's calculate
v₂ = √ (2 9.8 1.6 10⁻²)
v₂ = 0.56 m / s
Answer:
The the linear speed (in m/s) of a point on the rim of this wheel at an instant=0.418 m/s
Explanation:
We are given that
Angular acceleration, 
Diameter of the wheel, d=21 cm
Radius of wheel,
cm
Radius of wheel, 
1m=100 cm
Magnitude of total linear acceleration, a=
We have to find the linear speed of a at an instant when that point has a total linear acceleration with a magnitude of 1.7 m/s2.
Tangential acceleration,


Radial acceleration,
We know that

Using the formula

Squaring on both sides
we get






Hence, the the linear speed (in m/s) of a point on the rim of this wheel at an instant=0.418 m/s
It would take millions of years to form a mountain as plates move very slowly and to form it first one plate should climb upon another. After this very slowly this hill will convert into a mountain.