Answer:
32.46m/s
Explanation:
Hello,
To solve this exercise we must be clear that the ball moves with constant acceleration with the value of gravity = 9.81m / S ^ 2
A body that moves with constant acceleration means that it moves in "a uniformly accelerated motion", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.
When performing a mathematical demonstration, it is found that the equations that define this movement are the follow

Where
Vf = final speed
Vo = Initial speed
=7.3m/S
A = g=acceleration
=9.81m/s^2
X = displacement
=51m}
solving for Vf

the speed with the ball hits the ground is 32.46m/s
Answer:
Explanation:
gravitational acceleration of meteoroid
= GM / R²
M is mass of planet , R is radius of orbit of meteoroid from the Centre of the planet .
R = (.9 x 6370 + 600 )x 10³ m
= 6333 x 10³ m
M , mass of the planet = 5.97 x 10²⁴ kg .
gravitational acceleration of meteoroid
= GM / R²
= (6.67 x 10⁻¹¹ x 5.97 x 10²⁴ kg / (6333 x 10³ m)²
9.92m/s²
Answer:
Explanation:
When the box is on the ramp , component of its weight along the ramp
= mg sinθ
Friction force acting on it in upward direction
=μ mg cosθ
For sliding
μ mg cosθ < mg sinθ
μ cosθ < sinθ
.5 x cos35 < sin35
.41 < .57
So the box will slide
When sliding starts , kinetic friction acts
Net force in downward direction
mgsinθ - μ mg cosθ
acceleration
= gsinθ - μ g cosθ
= 5.62 - .3 x 9.8 x cos35
= 5.62 - 2.4
= 3.22 m /s²
Answer:
because
Explanation:
streasm dont flow horizontal because if it did then that would be breaking all laws of physics and we know that what goes up must com down but water cant flow upstream only down if it does flow horizontally then it would either be between two hills or in a plains
Answer:
Yes, if the two carts are moving into opposite directions
Explanation:
The total momentum of the system of two carts is given by:

where
m1, m2 are the masses of the two carts
v1, v2 are the velocities of the two carts
Let's remind that v (the velocity) is a vector, so its sign depends on the direction in which the cart is moving.
We want to know if it is possible that the total momentum of the system can be zero, so it must be:

From this equation, we see that this condition can only occur if v1 and v2 have opposite signs. Opposite signs mean opposite directions: therefore, the total momentum can be zero if the two carts are moving into opposite directions.