politics. Famous possible eg is of Werner Heisenberg in WW2. He delayed German attempt to build a nuclear bomb. US did build one ... hiroshima and nagasaki.
debbie may have got skilfully lucky by trial and error
Answer:
Explanation:
a rigid object in uniform rotation about a fixed axis does not satisfy both the condition of equilibrium .
First condition of equilibrium is that net force on the body should be zero.
or F net = 0
A body under uniform rotation is experiencing a centripetal force all the time so F net ≠ 0
So first condition of equilibrium is not satisfied.
Second condition is that , net torque acting on the body must be zero.
In case of a rigid object in uniform rotation , centripetal force is applied towards the centre ie towards the line joining the body under rotation with the axis .
F is along r
torque = r x F
= r F sinθ
θ = 0 degree
torque = 0
Hence 2nd condition is fulfilled.
<span> Allied Forces. they became the allies.</span>
Answer:
h = v₀ g / a
Explanation:
We can solve this problem using the kinematic equations. As they indicate that the air does not influence the vertical movement, we can find the time it takes for the body to reach the floor
y =
t - ½ g t²
The vertical start speed is zero
t² = 2t / g
The horizontal document has an acceleration, with direction opposite to the speed therefore it is negative, the expression is
x = v₀ₓ t - ½ a t²
Indicates that it reaches the same exit point x = 0
v₀ₓ t = ½ a t2
v₀ₓ = ½ a (2h / g)
v₀ₓ = v₀
h = v₀ g / a
Answer:
Speed at bottom of the hill (v) = 11.74 m/s
Explanation:
Given:
Combined mass = 48.8 kg
Height h = 7.05 m
Find:
Speed at bottom of the hill (v)
Computation:
v² = 2gh
v = √2 x 9.8 x 7.05
v = √138.18
v = 11.74 m/s
Speed at bottom of the hill (v) = 11.74 m/s