The alpha line in the Balmer series is the transition from n=3 to n=2 and with the wavelength of λ=656 nm = 6.56*10^-7 m. To get the frequency we need the formula: v=λ*f where v is the speed of light, λ is the wavelength and f is the frequency, or c=λ*f. c=3*10^8 m/s. To get the frequency: f=c/λ. Now we input the numbers: f=(3*10^8)/(6.56*10^-7)=4.57*10^14 Hz. So the frequency of the light from alpha line is f= 4.57*10^14 Hz.
The force will be 4 times smaller.
Answer:
Increase in mass and height
Explanation:
The gravitational potential energy of an object can increase if the mass and height of object is increased.
Gravitational potential energy is the energy due to the position of a body.
It is expressed as:
Gravitational potential energy = mass x acceleration due gravity x height
Increasing mass and height will cause an increase in gravitational potential energy.
The direction of the electric field would be south.
qE/m = 115
<span> E = 115*m/q </span>
<span> = 115 * 9.1 * 10^(-31) / 1.67*10^(-19) </span>
<span> = 762.87 * 10^(-12) </span>
<span> = 6.27 x 10^-10 N/C
</span>
Hope this answers the question. Have a nice day. Feel free to ask more questions.
Answer:
10.09 N
Explanation:
Analogously to Newton's second law, torque can be defined as:

Here, I is the moment of inertia and
is the angular acceleration. We have:

Torque is the vector product of the position vector of the point at which the force is applied by the force vector:

Since the effective lever arm is perpendicular to the force, the angle between them is
. The magnitud of this vector product is defined as:
.
Solving for F and replacing the known values:
