<span>The total
energy stored is the sum of the energy stored in the capacitors. If the
capacitors are series connected
capacitors, then the charging current is the same for both capacitors. This
means that each capacitor stores the same energy and the stored energy is two
times the energy of any of the capacitors.</span>
The distance covered on the floor after leaving the ramp is the dependent variable.
- As a result of the marble's size, the substance it is constructed of, and the angle at which it is placed onto the ground, the distance it rolls varies.
- Therefore, the angle at which the marble is released onto the ground, the type of material used to make the stone, or its size can all be considered independent variables.
<h3>What is Independent variable?</h3>
- There are independent and dependent variables in every experiment.
- A variable is considered independent if its change is not influenced by the change in another variable or factor.
<h3>What is Dependent variable?</h3>
In any experiment, the dependent variable must be measured or determined, and it must change as the independent variable does.
Learn more about independent and dependent variable here:
brainly.com/question/1479694
#SPJ4
Answer:
The x-component of the electric field at the origin = -11.74 N/C.
The y-component of the electric field at the origin = 97.41 N/C.
Explanation:
<u>Given:</u>
- Charge on first charged particle,
- Charge on the second charged particle,
- Position of the first charge =
- Position of the second charge =
The electric field at a point due to a charge at a point distance away is given by
where,
- = Coulomb's constant, having value
- = position vector of the point where the electric field is to be found with respect to the position of the charge .
- = unit vector along .
The electric field at the origin due to first charge is given by
is the position vector of the origin with respect to the position of the first charge.
Assuming, are the units vectors along x and y axes respectively.
Using these values,
The electric field at the origin due to the second charge is given by
is the position vector of the origin with respect to the position of the second charge.
Using these values,
The net electric field at the origin due to both the charges is given by
Thus,
x-component of the electric field at the origin = -11.74 N/C.
y-component of the electric field at the origin = 97.41 N/C.
Answer:
The frog's horizontal velocity is 0.2 m/s.
Explanation:
To solve this problem, we must first remember what velocity is and how we solve for it. Velocity can be solved for using the formula x/t, where x represents horizontal distance and t represents time (in seconds), that it takes to travel this distance. If we plug in the given numbers for these variables and solve, we get the following:
v = x/t
v = 0.8m/4s
v = 0.2 m/s
Therefore, the correct answer is 0.2 m/s. We can verify that these units are correct because the formula calls for distance divided by time, so meters per second is a sensible answer.
Hope this helps!