Answer:
630.75 j
Explanation:
from the question we have the following
total mass (m) = 54.5 kg
initial speed (Vi) = 1.4 m/s
final speed (Vf) = 6.6 m/s
frictional force (FF) = 41 N
height of slope (h) = 2.1 m
length of slope (d) = 12.4 m
acceleration due to gravity (g) = 9.8 m/s^2
work done (wd) = ?
- we can calculate the work done by the boy in pushing the chair using the law of law of conservation of energy
wd + mgh = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d)
wd = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d) - (mgh)
where wd = work done
m = mass
h = height
g = acceleration due to gravity
FF = frictional force
d = distance
Vf and Vi = final and initial velocity
wd = (0.5 x 54.5 x 6.9^2) - (0.5 x 54.5 x 1.4^2) + (41 x 12.4) - (54.5 X 9.8 X 2.1)
wd = 630.75 j
Answer: SI unit of pressure
Explanation: The pascal (pronounced pass-KAL and abbreviated Pa) is the unit of pressure or stress in the International System of Units (SI). Reduced to base units in SI, one pascal is one kilogram per meter per second squared; that is, 1 Pa = 1 kg · m-1 · s-2.
Hope this helps! Have a fantastic rest of ur day, luv!
Answer:
The density of the sample is 36 g/cm³
Explanation:
m= 972g
l=3cm
V = l³ = 3³ = 27 cm³
density = mass/volume
= 972/27
= 36 g/cm³
The sentence is accurate, therefore TRUE is the answer.
To solve this problem we will use the concepts related to gravitational acceleration and centripetal acceleration. The equality between these two forces that maintains the balance will allow to determine how the rigid body is consistent with a spherically symmetric mass distribution of constant density. Let's start with the gravitational acceleration of the Star, which is

Here



Mass inside the orbit in terms of Volume and Density is

Where,
V = Volume
Density
Now considering the volume of the star as a Sphere we have

Replacing at the previous equation we have,

Now replacing the mass at the gravitational acceleration formula we have that


For a rotating star, the centripetal acceleration is caused by this gravitational acceleration. So centripetal acceleration of the star is

At the same time the general expression for the centripetal acceleration is

Where
is the orbital velocity
Using this expression in the left hand side of the equation we have that



Considering the constant values we have that


As the orbital velocity is proportional to the orbital radius, it shows the rigid body rotation of stars near the galactic center.
So the rigid-body rotation near the galactic center is consistent with a spherically symmetric mass distribution of constant density