Time taken to complete one oscillation for a pendulum is Time Period, T = 0.5 s
Frequency of the pendulum oscillation = 1 / Time Period => f = 1 / T = 1 / 0.5
Frequency f = 2 Hz
Answer:
The answer is not able to be solved, because we dont know what objects are in it, and how heavy they are. More information please!
Explanation:
In order to solve the problem, it is necessary to apply the concepts related to the conservation of momentum, especially when there is an impact or the throwing of an object.
The equation that defines the linear moment is given by

where,
m=Total mass
Mass of Object
Velocity before throwing
Final Velocity
Velocity of Object
Our values are:

Solving to find the final speed, after throwing the object we have

We have three objects. For each object a launch is made so the final mass (denominator) will begin to be subtracted successively. In addition, during each new launch the initial speed will be given for each object thrown again.
That way during each section the equations should be modified depending on the previous one, let's start:
A) 



B) 



C) 



Therefore the final velocity of astronaut is 3.63m/s
Answer:
is the rock's speed.
Explanation:
Momentum is defined as motion possessed by the moving body's mass. Mathematically it a product of mas and velocity of the body.

Given : Mass of rock = m = 1.45 kg
Velocity of the rock = v
Momentum of the rock = P =


is the rock's speed.