In physics, the law of conservation of energy<span> states that the total</span>energy<span> of an isolated system remains constant—it is said to be conserved over time. </span>Energy<span> can neither be created nor destroyed; rather, it transforms from one form to another.</span>
Answer: 1,500m/s
Explanation:
Relationship existing between velocity of a wave (v), wavelength(¶) and frequency(f) is
v = f¶... (1)
Since Frequency (f) is the reciprocal of the period (T);
Frequency = 1/Period i.e F = 1/T... (2)
Substituting equation 2 into 1 we have;
v = 1/T × ¶
v = ¶/T
Given wavelength ¶ = 9m
Period T = 0.006s
v = 9/0.006
v = 1,500m/s
The velocity of the wave will be 1,500m/s
Answer:w=mxg
2x10 =20 N
Explanation:force acting downwards is mg mass into gravitional feild
For two un-related quantities, the Heisenberg uncertainty equations holds: the prduct of the two uncertainty quantities is greater than

Example of unrelated quantities are position and momentum, energy and time.
Thus

Knowing the speed of the bacteria the uncertainty in its position is
Answer:
Water normally freezes at 0°C (32°F). Salt lowers the freezing temperature. (That is, it can remain a liquid at much lower temperatures.)
When sprinkled on ice, the salt lowers the freezing temperature of the water which effectively melts the ice when the salt dissolves into it. There is a limit to how low it can reduce the temperature, though. If the temperature drops below -9°C (15°F), it's too cold for the salt to dissolve into the ice.
When making ice cream, the salt lowers the temperature of the ice and water sufficiently enough to freeze the cream.