Answer:
3500N
Explanation:
Given parameters:
Mass of driver = 50kg
Speed = 35m/s
Time = 0.5s
Unknown:
Average force the seat belt exerts on her = ?
Solution:
The average force the seat belt exerts on her can be deduced from Newton's second law of motion.
F = mass x acceleration
So;
F = mass x 
F = 50 x
= 3500N
Answer:
14m/s
Explanation:
Given parameters:
Radius of the curve = 50m
Centripetal acceleration = 3.92m/s²
Unknown:
Speed needed to keep the car on the curve = ?
Solution:
The centripetal acceleration is the inwardly directly acceleration needed to keep a body along a curved path.
It is given as;
a =
a is the centripetal acceleration
v is the speed
r is the radius
Now insert the parameters and find v;
v² = ar
v² = 3.92 x 50 = 196
v = √196 = 14m/s
Answer:
The value is
Explanation:
Generally the moon's radial acceleration is mathematically represented as
Here
is the angular velocity which is mathematically represented as

substituting
for T(i.e the period of the moon ) we have
=>
From the question r(which is the radius of the orbit ) is evaluated as

substitute
for R and
H

=> 
So
That's the "angular frequency" or rotation "rate" of the motion.