Answer:
30.36°
Explanation:
By using linear momentum; linear momentum can be expressed by the relation:

where ;
m= mass
= velocity of components in the x direction
= velocity of components in the y direction
If we consider the east as the positive x and north as positive y which is synonymous to what we usually have on a graph.
Then;
Initial momentum = 
= 
However, the masses stick together after collision and move with a common velocity: 
∴ Final momentum = 
= 
From the foregoing ;
initial momentum = final momentum

So;



Finally;
The required angle θ = 
θ = 
θ = 
θ = 30.36°
Option C
In nuclear fission and fusion the mass defect is the mass lost during the reaction that is converted into energy
<u>Explanation:</u>
Mass defect is the contrast within the estimated mass of the released system and the empirically estimated mass of the nucleus. The nuclear binding energy is acknowledged as mass, and that mass enhances "missing".
This missing mass is described as a mass defect, which is nuclear energy, also acknowledged as the mass discharged from the reaction as any trajectories. The mass defect of a nucleus depicts the mass of the energy adhesive of the nucleus and is the variation amidst the mass of a nucleus and the entirety of the masses of the nucleons of which it is comprised.
Number three
They contain protons (positive), neutrons (negative), electrons (neutral) and all are in a nucleus which is part of an atom
Answer:
It would be a square and 2d
Explanation: