Answer:
Hi the answer is A, hopefully i helped you
Consider the following sets of sample data: A: $29,400, $30,900, $21,000, $33,200, $21,300, $24,600, $29,500, $22,500, $35,200,
Lana71 [14]
Answer:
CV for A = 21.8%
CV for B = 15.5%
Step-by-step explanation:
The formula for coefficient of variation is:
CV = Standard Deviation / Mean
So,
For A:
Mean = Sum/No. of items
= 391300/14
=$27950
and
SD = $6085.31
CV for A = 6085.31/27950 * 100
=21.77%
Rounding off to one decimal
CV for A = 21.8%
For B:
Mean = Sum/No. of items
= 43.58/11
=3.96
and
SD = 0.615
CV for B = 0.615/3.96 * 100
=15.53%
=15.5% ..
Let X= the number of tickets sold at $35 each
Let 350 -X = the number of tickets sold at $25 each
The number of tickets sold for each type will be computed as follows:
X(35)+(350-X)25=10250
35X+8750-25X=10250
10X=10250-8750
X=1500/10
X=150 the number of tickets sold at $35 each
350-150 the number of tickets sold at $25 each
To recheck:
150(35)+200(25)
5250+5000
10250