Answer:
D) CN⁻
Explanation:
Hund's Rule of Maximum Multiplicity state that electrons go into degenerate orbitals of sub-levels (p,d, and f ) singly before pairing commences. Hund's rule is useful in determining the number of unpaired electrons in an atom. As such, it explains some magnetic properties of elements.
An element whose atoms or molecules contain unpaired electrons is paramagnetic. i.e., weakly attracted to substances in a magnetic field.
On the other hand, the element whose atoms or molecules are filled up with paired electrons is known as diamagnetic, i.e., not attracted by magnetic substances.
According to the molecular orbital theory, the diamagnetic molecule is CN⁻ because of the absence of unpaired electrons.
It's lone a little distinction (103 degrees versus 104 degrees in water), and I trust the standard rationalization is that since F is more electronegative than H, the electrons in the O-F bond invest more energy far from the O (and near the F) than the electrons in the O-H bond. That moves the powerful focal point of the unpleasant constrain between the bonding sets far from the O, and thus far from each other. So the shock between the bonding sets is marginally less, while the repugnance between the solitary matches on the O is the same - the outcome is the edge between the bonds is somewhat less.
Answer:
a. Polar
b. Polar
c. Non-polar
d. Non-polar
Explanation:
a.
, hydronium cation contains a positive charge. Just as any other ion, it is polar, as it has a net charge.
b.
has the same shape as water. There are two lone pairs on sulfur atom which produce an overall dipole moment in this molecule, the bent structure is polar.
c.
is non-polar, as the central atom, phosphorus, doesn't contain any lone pairs, all the dipole moments cancel out: two dipole moments in the vertical plane, P-Cl, and three P-Cl dipoles in the horizontal plane within a trigonal bipyramidal shape.
d.
is non-polar, since it's a tetrahedral molecule with no lone pairs on carbon atom, all four C-F dipole moments cancel out to yield a net 0 dipole moment.
Answer:
Explanation:
Group one elements are alkali metals. All alkali metal have one valance electron. They loses their one valance electron and from cation with charge of +1.
Charges on group one.
Hydrogen = +1
Lithium = +1
Sodium = +1
Potassium = +1
Rubidium = +1
Cesium = +1
Francium = +1
Group two elements are alkaline earth metals. All alkaline earth metal have two valance electron. They loses their two valance electron and from cation with charge of +2.
Charges on group two.
Beryllium = +2
Magnesium = +2
Calcium = +2
Strontium = +2
Barium= +2
Radium = +2
Group 13 elements are boron family. All elements have three valance electrons. They loses their three valance electron and from cation with charge of +3.
Charges on group 13.
Boron = +3
Aluminium = +3
Gallium = +3
Indium = +3
Thallium= +3
Group 13 elements are also shows +1 charge by losing one valance electron.
<h2>

</h2>
Explanation:
1. Water decomposition
- Decomposition reactions are represented by-
The general equation: AB → A + B.
- Various methods used in the decomposition of water are -
- Electrolysis
- Photoelectrochemical water splitting
- Thermal decomposition of water
- Photocatalytic water splitting
- Water decomposition is the chemical reaction in which water is broken down giving oxygen and hydrogen.
- The chemical equation will be -

Hence, balancing the equation we need to add a coefficient of 2 in front of
on right-hand-side of the equation and 2 in front of
on left-hand-side of the equation.
∴The balanced equation is -
→ 
2. Formation of ammonia
- The formation of ammonia is by reacting nitrogen gas and hydrogen gas.
→ 
Hence, for balancing equation we need to add a coefficient of 3 in front of hydrogen and 2 in front of ammonia.
∴The balanced chemical equation for the formation of ammonia gas is as follows -
→
.
- When 6 moles of
react with 6 moles of
4 moles of ammonia are produced.