Answer:
The common ion will be di-positive ion.
Explanation:
The ionization energy is defined as the amount of energy needed for removal of most loosely bound electron from an isolated atom in gaseous state.
The low ionization energy shows that the atom is able to give electron easily as after losing electron it may attain noble gas configuration or half filled stability.
Here the first and second ionization energy, both are low suggesting that the element is ready to give two electrons easily to form a di-positive ion however the third ionization energy is high which shows that it will not form tri-positive ion commonly.
The question is improperly formatted.
What is the concentration of H+ ions in a 2.2 M solution of HNO3.
Answer:-
2.2 moles of H+ per litre
Explanation:-
M stands for molarity. 2.2 M means 2.2 moles of HNO3 is present per litre of the solution.
Now HNO3 has just 1 H in it's formula. HNO3 would give H+. So 2.2 moles of HNO3 would mean 2.2 moles of H+ per litre.
Answer:
98.3 gradius Celsius
Explanation:
This problem is solved using the Ideal Gas Equation
pV = nRT
...
Please see the step-by-step solution in the picture attached below.
Hope this answer can help you. Have a nice day!