If the force is applied to lift the box, then there is no work done as the displacement of the box is not in the same direction of the box.
However, if the force is being applied to move the box in the direction of the force, then the work done is:
Work = force x distance
Work = 1500 x 3
Work = 4,500 Joules
Answer:
36
Explanation:
products and reactants have to be equal
Answer:
1) Maximun ammount of nitrogen gas: 
2) Limiting reagent: 
3) Ammount of excess reagent: 
Explanation:
<u>The reaction </u>

Moles of nitrogen monoxide
Molecular weight: 


Moles of hydrogen
Molecular weight: 


Mol rate of H2 and NO is 1:1 => hydrogen gas is in excess
1) <u>Maximun ammount of nitrogen gas</u> => when all NO reacted


2) <u>Limiting reagent</u>:
3) <u>Ammount of excess reagent</u>:


Answer:
1. pH = 1.23.
2. 
Explanation:
Hello!
1. In this case, for the ionization of H2C2O4, we can write:

It means, that if it is forming a buffer solution with its conjugate base in the form of KHC2O4, we can compute the pH based on the Henderson-Hasselbach equation:
![pH=pKa+log(\frac{[base]}{[acid]} )](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29)
Whereas the pKa is:

The concentration of the base is 0.347 M and the concentration of the acid is 0.347 M as well, as seen on the statement; thus, the pH is:

2. Now, since the addition of KOH directly consumes 0.070 moles of acid, we can compute the remaining moles as follows:

It means that the acid remains in excess yet more base is yielded due to the effect of the OH ions provided by the KOH; therefore, the undergone chemical reaction is:

Which is also shown in net ionic notation.
Best regards!
Gasoline would be a mixture if I recalled