Answer:
Mass percent N₂ = 89%
Mass percent H₂ = 11%
Explanation:
First we <u>use PV=nRT to calculate n</u>, which is the total number of moles of nitrogen and hydrogen:
- 1.03 atm * 7.45 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 305 K
So now we know that
- MolH₂ + MolN₂ = 0.307 mol
and
- MolH₂ * 2 g/mol + MolN₂ * 28 g/mol = 3.49 g
So we have a <u>system of two equations and two unknowns</u>. We use algebra to solve it:
Express MolH₂ in terms of MolN₂:
- MolH₂ + MolN₂ = 0.307 mol
Replace that value in the second equation:
- MolH₂ * 2 g/mol + MolN₂ * 28 g/mol = 3.49
- (0.307-MolN₂) * 2 + MolN₂ * 28 = 3.49
- 0.614 - 2MolN₂ + 28molN₂ = 3.49
Now we calculate MolH₂:
- MolH₂ + MolN₂ = 0.307 mol
Finally, we convert each of those mol numbers to mass, to <u>calculate the mass percent</u>:
- N₂ ⇒ 0.111 mol * 28 g/mol = 3.108 g N₂
- H₂ ⇒ 0.196 mol * 2 g/mol = 0.392 g H₂
Mass % N₂ = 3.108/3.49 * 100% = 89.05% ≅ 89%
Mass % H₂ = 0.392/3.49 * 100% = 11.15% ≅ 11%
CO2<span> is a linear molecule and the Oxygen (O) atoms on each end are symmetrical. Polarity results from an unequal sharing of valence electrons. Because of this symmetry there is no region of unequal sharing and </span>CO2<span> is a</span>nonpolar<span> molecule</span>
Answer:
industrialization and rapid human population growth.
Explanation:
Hope this helps
Drugs interfere with the way neurons send, receive, and process signals via neurotransmitters. Some drugs, such as marijuana and heroin, can activate neurons because their chemical structure mimics that of a natural neurotransmitter in the body. This allows the drugs to attach onto and activate the neurons. Although these drugs mimic the brain’s own chemicals, they don’t activate neurons in the same way as a natural neurotransmitter, and they lead to abnormal messages being sent through the network.
Other drugs, such as amphetamine or cocaine, can cause the neurons to release abnormally large amounts of natural neurotransmitters or prevent the normal recycling of these brain chemicals by interfering with transporters. This too amplifies or disrupts the normal communication between neurons.
Boiling point of a compound is determined by the strength of intermolecular forces of attraction between the molecules present in it. Stronger the intermolecular forces of attraction, higher will be the boiling point.
Ionic compounds show ion-ion interactions which are the strongest among all. Ion-dipole interactions are shown when ionic solutes are dissolved in polar solvents. Hydrogen bonding is also a relatively stronger force that is present between H atom and an electronegative atom like F, O and N(
) . All polar molecules show dipole-dipole interaction (
and
). Dispersion forces are the weakest intermolecular forces due to momentary dipoles between electron clouds and nucleus.
Among the given compounds,
has dispersion forces as the major intermolecular forces of attraction. So they they exhibit the weakest IMF, hence have the lowest boiling point.