For this we want to use Boyle's Law. Boyle’s law states that the pressure and volume of a fixed quantity of a gas are inversely proportional under constant temperature conditions. The formula for this is P1V1 = P2V2. We want to solve this out so it equals V2 (Volume 2). So P1V1 / P2 = V2. Then plug in your values for the variables. So (101)(4.2) / 235 = V2; so 424.2 / 235 = V2. The final volume equals 1.81. I hope this helps, If not I am very sorry.
(c) as the change in the dependent variable is in direct CORRELATION to the change in the independent variable.
For this problem, we use the Coulomb's law written in equation as:
F = kQ₁Q₂/d²
where
F is the electrical force
k is a constant equal to 9×10⁹
Q₁ and Q₂ are the charge of the two objects
d is the distance between the two objects
Substituting the values:
F = (9×10⁹)(-22×10⁻⁹ C)(-22×10⁻⁹ C)/(0.10 m)²
F = 0.0004356 N
Answer and Explanation:
The computation of the shortest wavelength in the series is shown below:-

Where
represents wavelength
R represents Rydberg's constant
represents Final energy states
and
represents initial energy states
Now Substitute is

now we will put the values into the above formula


Now we will rewrite the answer in the term of 

So, the whole Paschen series is in the part of the spectrum.