Answer:
0.14
Explanation:
Flow rate is the volume flowing through a point at a particular time, in calcuing flow rate we have
Q= v*t
it in terms of Area, we have Q= A*v
Where A= area
v= velocity.
Solving the question , flow rate is constant then
A*v= constant
A(i) v(i)= A(f) v(f)
Where A(i)= initial area= 1.00cm^2
A(f)= final area= 0.400cm^2
V(i) and V(f) are the initial and final velocity respectively and the ratio of the two will gives us the factor
Substitute the values into the equation we have
1 V(i)= 4 V(f)
But we were told that the cross sectional area of 1.00cm^2 branches into 18 smaller arteries.
Then
1 V(i)=0.4 V(f)*(18)
1 V(i)=7.2V(f)
Then if we find the ratio of the velocity, we will get the factor.
V(f)/V(i)= 1/7.2
V(f)/V(i)=0.14
Hence, the factor of the average velocity of the blood reduced when it passes into these branches is 0.14
The Kelvin scale is also called absolute zero scale
Explanation:
true
The dimension of a/b where x is the distance and t is the time is T
Given the expression
x = at + bt²
where
x is the distance
t is the time
Based on the homogeneity principle, the expression on the left-hand side must be equal to that on the right. Hence;
x = at

Since x is the distance and distance is measured in metres, the dimension equivalent will be the length 'L'
Since t is the time and time is measured in seconds, the dimension equivalent will be the seconds 'T'

Similarly;
x = bt²

Next is to get a/b;

Hence the dimension of a/b is T
Answer:
F = 789 Newton
Explanation:
Given that,
Speed of the car, v = 10 m/s
Radius of circular path, r = 30 m
Mass of the passenger, m = 60 kg
To find :
The normal force exerted by the seat of the car when the it is at the bottom of the depression.
Solution,
Normal force acting on the car at the bottom of the depression is the sum of centripetal force and its weight.



N = 788.6 Newton
N = 789 Newton
So, the normal force exerted by the seat of the car is 789 Newton.