D=s(t) so it would be d=10(.19) d=.19 FOR BITH SNDWERS
Answer:
A. Zero
Explanation:
Given data,
The charge of the test charge, q = 1 C
The distance the charge moved against the filed of intensity, x = 30 cm
= 0.3 m
The electric field intensity, E = 50 N/C
The energy stored in the charge at 0.3 m is given by the formula,
V = k q/r
Where,
= 9 x 10⁹ Nm²C⁻²
The charge is moved from the potential V₁ to V₂ at 30 cm
Substituting the given values in the above equation
V₁ = 9 x 10⁹ x 30 / 0.3
= 1.5 x 10¹² J
And,
V₂ = 1.5 x 10¹² J
The energy stored in it is,
W = V₂ - V₁
= 0
Hence, the energy stored in the charge is, W = 0
The four distinct charges' combined potentials make up the potential in the square's center. The amount of the charge and the distance from the charge both affect the potential caused by a point charge.
Therefore, the center's total potential is V=4V1=ks4 q.
<h3>What is a charge?</h3>
Due to the physical characteristic of electric charge, charged material experiences a force when it is exposed to an electromagnetic field. An object that has no net charge is said to be neutral. Classical electrodynamics is the name given to an earlier theory of the interactions of charged particles.
You can have positive or negative electric charges (commonly carried by protons and electrons respectively). opposing charges attract one another whereas similar charges repel one another.
To learn more about charge from the given link:
brainly.com/question/9194793
#SPJ4
Answer:
The time it will take for the car to reach a velocity of 28 m/s is 7 seconds
Explanation:
The parameters of the car are;
The acceleration of the car, a = 4 m/s²
The final velocity of the car, v = 28 m/s
The initial velocity of the car, u = 0 m/s (The car starts from rest)
The kinematic equation that can be used for finding (the time) how long it will take for the car to reach a velocity of 28 m/s is given as follows;
v = u + a·t
Where;
v = The final velocity of the car, v = 28 m/s
u = The initial velocity of the car = 0 m/s
a = The acceleration of the car = 4 m/s²
t = =The time it will take for the car to reach a velocity of 28 m/s
Therefore, we get;
t = (v - u)/a
t = (28 m/s - 0 m/s)/(4 m/s²) = 7 s
The time it will take for the car to reach a velocity of 28 m/s, t = 7 seconds.