A) initial volume
We can calculate the initial volume of the gas by using the ideal gas law:

where

is the initial pressure of the gas

is the initial volume of the gas

is the number of moles

is the gas constant

is the initial temperature of the gas
By re-arranging this equation, we can find

:

2) Now the gas cools down to a temperature of

while the pressure is kept constant:

, so we can use again the ideal gas law to find the new volume of the gas

3) In a process at constant pressure, the work done by the gas is equal to the product between the pressure and the difference of volume:

by using the data we found at point 1) and 2), we find

where the negative sign means the work is done by the surrounding on the gas.
Answer:
Mass and thus force depends on the reference frame chosen
Explanation:
This can be explained as Newton's law of gravity provides action which are instantaneous at a distance and involves the evaluation of all the quantities at present time or at the instant they occur.
If the body undergoes a change in its mass distribution there will be an immediate change in its gravitational force without any lag.
Now, if we talk about special relativity, it would be absurd to say that an information can travel faster than light. The effect is in synchronization with the cause in one reference frame where the effect occurs after the cause for some observer in some other reference frame.
In order to observe Newton's law of gravity all the observer's in different reference frames must observe the same phenomena which could only be possible if time were absolute and in special relativity, time is not absolute.
Therefore, Newton's law of gravity was inconsistent with the Einstein's Special Relativity.
Explanation:
A projectile (Cannon ball) is launched at an angle to the horizontal and rises up to a peak while moving horizontally. When it reaches the peak, the projectile starts to fall.
Answer:

Explanation:
The speed increased from 2.0 * 10^7 m/s to 4.0 * 10^7 m/s over a 1.2 cm distance.
Let us find the acceleration:


Electric force is given as the product of charge and electric field strength:
F = qE
where q = electric charge
E = Electric field strength
Force is generally given as:
F = ma
where m = mass
a = acceleration
Equating both:
ma = qE
E = ma / q
For an electron:
m = 9.11 × 10^{-31} kg
q = 1.602 × 10^{-19} C
Therefore, the electric field strength of the electron is:

The storm would be at least 7 miles away cause light travels faster than sound and you can tell how many miles away a lightning bolt might have hit by how long it takes the thunder to strike<span />