<h3>
Answer:</h3>
Momentum of the given body will be : 75000 Kg m/s
<h3>
Explanation:</h3>
According to Newton's first law of motion, all bodies continue to be in the state of rest or motion unless an external force is applied on the body. We can use this in the case of momentum also
The formula of momentum is given by :

Here, we are given the mass of the body ( m ) as 3000kg and the velocity of the body ( v ) as 25 m/s. On putting the values in the formula:

Momentum is associated with the mass of the moving body and can be defined as the quantity of motion measured as a product of mass and velocity.
Answer:
Also 3s.
Explanation:
Each component is independent in two dimensional motion. This means that <em>how much time does something take to reach the ground when dropped is independent from any horizontal velocity</em>. If at one run a drop lasts 3s, at another run with twice the (horizontal) velocity and same height will also last 3s, no matter what.
Answer: 0.25 m/s
Explanation: Speed = wavelengt · frequency
v = λf and frequency is 1/period f = 1/T
Then v = λ/T = 5 m / 20 s = 0.25 m/s
Wavespeed = frequency x wavelength
= 14 x 9
= 126 mm/s
= 0.126 m/s
Answer:
We know that the speed of sound is 343 m/s in air
we are also given the distance of the boat from the shore
From the provided data, we can easily find the time taken by the sound to reach the shore using the second equation of motion
s = ut + 1/2 at²
since the acceleration of sound is 0:
s = ut + 1/2 (0)t²
s = ut <em>(here, u is the speed of sound , s is the distance travelled and t is the time taken)</em>
Replacing the variables in the equation with the values we know
1200 = 343 * t
t = 1200 / 343
t = 3.5 seconds (approx)
Therefore, the sound of the gun will be heard at the shore, 3.5 seconds after being fired