Explanation:
Equilibrium position in y direction:
W = Fb (Weight of the block is equal to buoyant force)
m*g = V*p*g
V under water = A*h
hence,
m = A*h*p
Using Newton 2nd Law

Hence, T time period
T = 2*pi*sqrt ( h / g )
Answer:
3 m/s squared
Explanation:
The formula you use is Vf= Vi + at. You rearrange it to a= Vf - Vi/t. The Vf is 27m/s. The Vi is 0m/s and the t is 9s. Cross out Vi since it’s zero and you’re left with a= 27m/s divided by 9s, which equals 3
Answer:
Power = 21[W]
Explanation:
Initial data:
F = 35[N]
d = 18[m]
In order to solve this problem we must remember the definition of work, which tells us that it is equal to the product of a force for a distance.
Therefore:
Work = W = F*d = 35*18 = 630 [J]
And power is defined as the amount of work performed in a time interval.
Power = Work / time
Time = t = 30[s]
Power = 630/30
Power = 21 [W]
HCl is a strong electrolyte and when it dissolves in water it separates almost completely into positively - charged hydrogen ions and negatively - charged chloride ions. This aqueous solution is usually called hydrochloric acid.
Answer:
20.96 m/s^2 (or 21)
Explanation:
Using the formula (final velocity - initial velocity)/time = acceleration, we can plug in values and manipulate the problem to give us the answer.
At first, we know a car is going 8 m/s, that is its initial velocity.
Then, we know the acceleration, which is 1.8 m/s/s
We also know the time, 7.2 second.
Plugging all of these values in shows us that we need to solve for final velocity. We can do so by manipulating the formula.
(final velocity - initial velocity) = time * acceleration
final velocity = time*acceleration + initial velocity
After plugging the found values in, we get 20.96 m/s/s, or 21 m/s