780 seconds, or 13 minutes.
In the future, please use proper capitalization. There's a significant difference in the meaning between mV and MV. One of them indicated millivolts while the other indicates megavolts. For this problem, I'll make the following assumptions about the values presented. They are:
Total energy = 1.4x10^11 Joules (J)
Current per flash = 30 Columbs (C)
Potential difference = 30 Mega Volts (MV)
First, let's determine the power discharged by each bolt. That would be the current multiplied by the voltage, so
30 C * 30x10^6 V = 9x10^8 CV = 9x10^8 J
Now that we know how many joules are dissipated per flash, let's determine how flashes are needed.
1.4x10^11 / 9x10^8 = 1.56E+02 = 156
Since each flash takes 5 seconds, that means that it will take about 5 * 156 = 780 seconds which is about 780/60 = 13 minutes.
Answer:
the image can be rather real or virtual
you will hear a higher pitch due to a higher frequency.
Answer:
The speed of the cyclist is 2.75 km/min.
Explanation:
Given
To determine
We need to find the speed of a cyclist.
In order to determine the speed of a cyclist, all we need to do is to divide the distance covered by a cyclist by the time taken to cover the distance.
Using the formula involving speed, time, and distance

where
substitute d = 88, and t = 32 in the formula


Cancel the common factor 8

km/min
Therefore, the speed of the cyclist is 2.75 km/min.