The mass of this bag of cement in S.I. units (kg) is equal to 0.062 kilograms.
<u>Given the following data:</u>
- Mass of cement = 62 grams.
To calculate the mass of this bag of cement in S.I. units (kg):
<h3>How to convert to
S.I. units.</h3>
In Science, kilograms (kg) is the standard unit of measurement or S.I. units of the mass of a physical object. Thus, we would convert the value of the mass of this bag of cement in grams to kilograms (kg) as follows:
<u>Conversion:</u>
1000 grams = 1 kilograms.
62 grams = X kilograms.
Cross-multiplying, we have:
X = 
X = 0.062 kilograms.
Read more on mass here: brainly.com/question/13833323
Answer:
The answer is "False"
Explanation:
The geologic time scale is the "schedule" for occasions in Earth history. It partitions time into named units of unique time called in descending order of duration "eons, eras, periods, epochs, and ages". The specification of those geologic time units depends on stratigraphy, which is the relationship and order of rock layers. The fossil structures that happen in the stones, nonetheless, give the central methods for setting up a geologic time scale, with the circumstance of the development and vanishing of far and wide species from the fossil record being used to outline the beginnings and endings of ages,, periods, and different stretches.
Geologic time is the broad time period involved by the geologic history of Earth. Formal geologic time starts toward the beginning of the Archean Eon (4.0 billion to 2.5 billion years back) and proceeds to the current day.
Answer:
U₂ = 20 J
KE₂ = 40 J
v= 12.64 m/s
Explanation:
Given that
H= 12 m
m = 0.5 kg
h= 4 m
The potential energy at position 1
U₁ = m g H
U₁ = 0.5 x 10 x 12 ( take g= 10 m/s²)
U₁ = 60 J
The potential energy at position 2
U₂ = m g h
U ₂= 0.5 x 10 x 4 ( take g= 10 m/s²)
U₂ = 20 J
The kinetic energy at position 1
KE= 0
The kinetic energy at position 2
KE= 1/2 m V²
From energy conservation
U₁+KE₁=U₂+KE₂
By putting the values
60 - 20 = KE₂
KE₂ = 40 J
lets take final velocity is v m/s
KE₂= 1/2 m v²
By putting the values
40 = 1/2 x 0.5 x v²
160 = v²
v= 12.64 m/s