Explanation:
(a) Draw a free body diagram of the cylinder at the top of the loop. At the minimum speed, the normal force is 0, so the only force is weight pulling down.
Sum of forces in the centripetal direction:
∑F = ma
mg = mv²/RL
v = √(g RL)
(b) Energy is conserved.
EE = KE + RE + PE
½ kd² = ½ mv² + ½ Iω² + mgh
kd² = mv² + Iω² + 2mgh
kd² = mv² + (m RC²) ω² + 2mg (2 RL)
kd² = mv² + m RC²ω² + 4mg RL
kd² = mv² + mv² + 4mg RL
kd² = 2mv² + 4mg RL
kd² = 2m (v² + 2g RL)
d² = 2m (v² + 2g RL) / k
d = √[2m (v² + 2g RL) / k]
Answer:
a) if we assume that the water does not spill, Beaker B weighs more than beaker S, or which in this case Beaker A weighs more
b) If it is spilled in water the weight of the two beakers is the same
Explanation:
The beaker weight is
beaker A
W_total = W_ empty + W_water
Beaker B
W_total = W_ empty + W_water + W_roca
a) if we assume that the water does not spill, Beaker B weighs more than beaker S, or which in this case Beaker A weighs more
b) If it is spilled in water, the weight of the two beakers is the same because the amount of liquid spilled and equal to the weight of the stone, therefore the two beakers weigh the same
Answer: = 5.75 × 10 -6
Explanation:
= 5.75 × 10-6
(scientific notation)
= 5.75e-6
(scientific e notation)
= 5.75 × 10-6
(engineering notation)
(millionth; prefix micro- (u))
= 0.00000575
(real number)
Answer:
I do not think that it is the most reliable way to gain information since it is very hard to do and can be easily messed up. No, I don't think you can charge someone on only evidence from blood spatter, but if there was additional evidence I think that this would definitely help with the case but not on its own, since it doesn’t give you physical evidence about the suspect.
Explanation:
Answer: The volume of gas expands because of the decrease in pressure as he tries to exit the water body, therefore he must take necessary precaution.
Explanation:
Using Boyle's law which states that the the pressure of a given mass of an ideal gas is inversely proportional to its volume at a constant temperature
ie P1VI=P2V2
A diver absorbs compressed nitrogen gas when he dives into the water body, As he ascends out of the water body having less pressure, the volume of nitrogen gas which he absorbs will tend to expand following Boyle's Law. Therefore a scuba driver should not rises quickly but slowly to the surface or else the expanding nitrogen gas can cause tiny bubbles in his blood and tissue to form together with joints pains and eventually cause decompression sickness needing medical attention.