The specific heat of mercury is 149.4 J/(kgK)
Explanation:
When a substance is supplied with an amount of energy Q, its temperature increases according to the equation:

where
is the increase in temperature
m is the mass of the sample
is its specific heat capacity
For the sample of mercury in this problem we have
Q = 275 J
m = 0.450 kg

Therefore, by re-arranging the equation we find the mercury's specific heat:

Learn more about specific heat capacity:
brainly.com/question/3032746
brainly.com/question/4759369
#LearnwithBrainly
Answer:
Explanation:
Surface charge density, σ = 9 μC/m² = 9 x 10^-6 C/m²
According to the Gauss theorem,
Electric field due to the sheet is given by


E = 5.08 x 10^5 N/C
Answer:
Explanation:
Given that:
mass of stone (M) = 0.100 kg
mass of bullet (m) = 2.50 g = 2.5 ×10 ⁻³ kg
initial velocity of stone (
) = 0 m/s
Initial velocity of bullet (
) = (500 m/s)i
Speed of the bullet after collision (
) = (300 m/s) j
Suppose we represent
to be the velocity of the stone after the truck, then:
From linear momentum, the law of conservation can be applied which is expressed as:





∴
The magnitude now is:


Using the tangent of an angle to determine the direction of the velocity after the struck;
Let θ represent the direction:


The North Pole would be your answer