1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DaniilM [7]
3 years ago
8

WILL UPVOTE EVERY ANSWER! MULTIPLE CHOICE! 7 QUESTIONS!

Physics
1 answer:
m_a_m_a [10]3 years ago
3 0
1 - None

2 - B

3 - D

4 - D

5 - A

6 - A

7 - D

Hope this helps!
You might be interested in
observe the figure given carefully volume of water in each vessel is shown arrange them in order of decreasing pressure at the b
mihalych1998 [28]

Answer:

See the explanation below

Explanation:

The pressure is defined as the product of the density of the liquid by the gravitational acceleration by the height, and can be easily calculated by means of the following equation.

 P=Ro*g*h

where:

Ro = density of the fluid [kg/m³]

g = gravity acceleration = 9.81 [m/s²]

h = elevation [m]

In this way we can understand that the greater pressure is achieved by means of the height of the liquid, that is, as long as the fluid has more height, greater pressure will be achieved at the bottom.

Therefore in order of decreasing will be  

The largest pressure with the largest height of the liquid, container B. The next is obtained with container D, the next with container A and the lowest pressure with container C.  

The pressure decreases as we go from the container B - D - A - C

5 0
3 years ago
Part D
anygoal [31]

Answer: I didn't see a difference because the large ball's vertical displacement and velocity are the same as the small one's.

Explanation:

5 0
3 years ago
An object weighs 63.8 N in air. When it is suspended from a force scale and completely immersed in water the scale reads 16.8 N.
I am Lyosha [343]

Answer:

The density of this object is approximately 1.36\; {\rm kg \cdot L^{-1}}.

The density of the oil in this question is approximately 0.600\; {\rm kg \cdot L^{-1}}.

(Assumption: the gravitational field strength is g =9.806\; {\rm N \cdot kg^{-1}})

Explanation:

When the gravitational field strength is g, the weight (\text{weight}) of an object of mass m would be m\, g.

Conversely, if the weight of an object is (\text{weight}) in a gravitational field of strength g, the mass m of that object would be m = (\text{weight}) / g.

Assuming that g =9.806\; {\rm N \cdot kg^{-1}}. The mass of this 63.8\; {\rm N}-object would be:

\begin{aligned} \text{mass} &= \frac{\text{weight}}{g} \\ &= \frac{63.8\; {\rm N}}{9.806\; {\rm N \cdot kg^{-1}}} \\ &\approx 6.506\; {\rm kg}\end{aligned}.

When an object is immersed in a liquid, the buoyancy force on that object would be equal to the weight of the liquid that was displaced. For instance, since the object in this question was fully immersed in water, the volume of water displaced would be equal to the volume of this object.

When this object was suspended in water, the buoyancy force on this object was (63.8\; {\rm N} - 16.8\; {\rm N}) = 47.0\; {\rm N}. Hence, the weight of water that this object displaced would be 47.0 \; {\rm N}.

The mass of water displaced would be:

\begin{aligned}\text{mass} &= \frac{\text{weight}}{g} \\ &= \frac{47.0\: {\rm N}}{9.806\; {\rm N \cdot kg^{-1}}} \\ &\approx 4.793\; {\rm kg}\end{aligned}.

The volume of that much water (which this object had displaced) would be:

\begin{aligned}\text{volume} &= \frac{\text{mass}}{\text{density}} \\ &\approx \frac{4.793\; {\rm kg}}{1.00\; {\rm kg \cdot L^{-1}}} \\ &\approx 4.793\; {\rm L}\end{aligned}.

Since this object was fully immersed in water, the volume of this object would be equal to the volume of water displaced. Hence, the volume of this object is approximately 4.793\; {\rm L}.

The mass of this object is 6.50\; {\rm kg}. Hence, the density of this object would be:

\begin{aligned} \text{density} &= \frac{\text{mass}}{\text{volume}} \\ &\approx \frac{6.506\; {\rm kg}}{4.793\; {\rm L}} \\ &\approx 1.36\; {\rm kg \cdot L^{-1}} \end{aligned}.

(Rounded to \text{$3$ sig. fig.})

Similarly, since this object was fully immersed in oil, the volume of oil displaced would be equal to the volume of this object: approximately 4.793\; {\rm L}.

The weight of oil displaced would be equal to the magnitude of the buoyancy force: 63.8\; {\rm N} - 35.6\; {\rm N} = 28.2\; {\rm N}.

The mass of that much oil would be:

\begin{aligned}\text{mass} &= \frac{\text{weight}}{g} \\ &= \frac{28.2\: {\rm N}}{9.806\; {\rm N \cdot kg^{-1}}} \\ &\approx 2.876\; {\rm kg}\end{aligned}.

Hence, the density of the oil in this question would be:

\begin{aligned} \text{density} &= \frac{\text{mass}}{\text{volume}} \\ &\approx \frac{2.876\; {\rm kg}}{4.793\; {\rm L}} \\ &\approx 0.600\; {\rm kg \cdot L^{-1}} \end{aligned}.

(Rounded to \text{$3$ sig. fig.})

7 0
2 years ago
How many animals lost each hour
joja [24]

Answer:

562

Explanation:

6 0
3 years ago
Gravity __________ your kinetic energy when you are driving uphill and __________it when you are driving downhill.
Oxana [17]
Gravity decreases your kinetic energy when you are driving uphill since the direction of motion is opposite for both. Driving uphill is force going upward while gravity pulls object down. When it is going downhill, the car tends to go faster since the gravity helps the object to go down by adding another value to the total acceleration of the motion of the object. Using the forces of balance, an object going up tends to become heavier while object going down tends to become lighter because of the gravity factor. Another analogy is the motion of elevators going up and down that incurs effects to your weiight.
3 0
3 years ago
Other questions:
  • Which of the following is a type of renewable energy?
    5·2 answers
  • In the realm of scientific inquiry, making an observation typically leads to ___.
    9·2 answers
  • A rugby player runs with the ball directly toward his opponent's goal, along the positive direction of an x axis. He can legally
    9·1 answer
  • The parallel axis theorem relates Icm, the moment of inertia of an object about an axis passing through its center of mass, to I
    10·1 answer
  • A flea walking along a ruler moves from the 45 cm mark to the 27 cm mark. It does this in 3 seconds. What is the speed? What is
    11·1 answer
  • A 4kg block and a 2kg block can move on horizontal frictionless surface. The blocks are accelerated by a +12-N force that pushes
    10·1 answer
  • - Explain why an aircraft will tend to lose height
    11·1 answer
  • What happens after the president gives the budget to Congress?
    9·1 answer
  • HEY BOO HELP?!??!!??​
    7·2 answers
  • Jose was out drinking with his friends for nearly the whole night. The next morning he was confused and vomiting, and had a low
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!