1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnesinka [82]
3 years ago
13

A shopping cart given an initial velocity of 2.0 m/s undergoes a constant acceleration to a velocity of 13 m/s. What is the magn

itude of the carts acceleration if the time is 4.0?
Also if your really smart and have instagram please dm imaswagmeal and help me pls
Physics
1 answer:
olga55 [171]3 years ago
5 0

Answer:

The acceleration is a = 2.75 [m/s^2]

Explanation:

In order to solve this problem we must use kinematics equations.

v_{f} = v_{i} + a*t\\

where:

Vf = final velocity = 13 [m/s]

Vi = initial velocity = 2 [m/s]

a = acceleration [m/s^2]

t = time = 4 [s]

Now replacing:

13 = 2 + (4*a)

(13 - 2) = 4*a

a = 2.75 [m/s^2]

You might be interested in
Which of the following can lower the activation energy of a system?
exis [7]
Catalysts
a catalyst is something added to a reaction that speeds it up (or lowers the activation energy)

increasing the temp would speed up the whole reaction but not lower the activation energy
so B.
8 0
3 years ago
Suppose a wheel with a tire mounted on it is rotating at the constant rate of 3.33 times a second. A tack is stuck in the tire a
Troyanec [42]

Answer: 6.47m/s

Explanation:

The tangential speed can be defined in terms of linear speed. The linear speed is the distance traveled with respect to time taken. The tangential speed is basically, the linear speed across a circular path.

The time taken for 1 revolution is, 1/3.33 = 0.30s

velocity of the wheel = d/t

Since d is not given, we find d by using formula for the circumference of a circle. 2πr. Thus, V = 2πr/t

V = 2π * 0.309 / 0.3

V = 1.94/0.3

V = 6.47m/s

The tangential speed of the tack is 6.47m/s

7 0
3 years ago
Read 2 more answers
Can you explain that gravity pulls us to the Earth & can you calculate weight from masses on both on Earth and other planets
schepotkina [342]
I don't actually understand what your question is, but I'll dance around the subject
for a while, and hope that you get something out of it.

-- The effect of gravity is:  There's a <em>pair</em> of forces, <em>in both directions</em>, between
every two masses.

-- The strength of the force depends on the <em>product</em> of the masses, so it doesn't matter whether there's a big one and a small one, or whether they're nearly equal. 
It's the product that counts.  Bigger product ==> stronger force, in direct proportion.

-- The strength of the forces also depends on the distance between the objects' centers.  More distance => weaker force.  Actually, (more distance)² ==> weaker force.

-- The forces are <em>equal in both directions</em>.  Your weight on Earth is exactly equal to
the Earth's weight on you.  You can prove that.  Turn your bathroom scale face down
and stand on it.  Now it's measuring the force that attracts the Earth toward you. 
If you put a little mirror down under the numbers, you'll see that it's the same as
the force that attracts you toward the Earth when the scale is right-side-up.

-- When you (or a ball) are up on the roof and step off, the force of gravity that pulls
you (or the ball) toward the Earth causes you (or the ball) to accelerate (fall) toward the Earth. 
Also, the force that attracts the Earth toward you (or the ball) causes the Earth to accelerate (fall) toward you (or the ball).
The forces are equal.  But since the Earth has more mass than you have, you accelerate toward the Earth faster than the Earth accelerates toward you.

--  This works exactly the same for every pair of masses in the universe.  Gravity
is everywhere.  You can't turn it off, and you can't shield anything from it.

-- Sometimes you'll hear about some mysterious way to "defy gravity".  It's not possible to 'defy' gravity, but since we know that it's there, we can work with it.
If we want to move something in the opposite direction from where gravity is pulling it, all we need to do is provide a force in that direction that's stronger than the force of gravity.
I know that sounds complicated, so here are a few examples of how we do it:
-- use arm-muscle force to pick a book UP off the table
-- use leg-muscle force to move your whole body UP the stairs
-- use buoyant force to LIFT a helium balloon or a hot-air balloon 
-- use the force of air resistance to LIFT an airplane.

-- The weight of 1 kilogram of mass on or near the Earth is 9.8 newtons.  (That's
about 2.205 pounds).  The same kilogram of mass has different weights on other planets. Wherever it is, we only know one of the masses ... the kilogram.  In order
to figure out what it weighs there, we need to know the mass of the planet, and
the distance between the kilogram and the center of the planet.

I hope I told you something that you were actually looking for.
7 0
3 years ago
Jane is sliding down a slide. What kind of motion is she demonstrating?
Over [174]
When Jane is sliding down a slide, she is demonstrating translational motion. 
5 0
3 years ago
Atoms that are bonded together to form a new material with new<br> properties and characteristics. .
mihalych1998 [28]

Answer:

Explanation:

Atoms form chemical bonds to make their outer electron shells more stable. ... An ionic bond, where one atom essentially donates an electron to another, forms when one atom becomes stable by losing its outer electrons and the other atoms become stable (usually by filling its valence shell) by gaining the electrons.

7 0
2 years ago
Other questions:
  • A 7.00- kg bowling ball moves at 3.00 m/s. How fast musta
    6·1 answer
  • 2)
    10·1 answer
  • What is one of the most noticeable effects of the moon on earth??
    8·1 answer
  • Is the speed of light faster in helium or air?
    7·1 answer
  • Is a decrease in velocity considered an acceleration
    14·1 answer
  • A soccer ball is kicked horizontally off a bridge with a height of 36 m. The ball travels 25 m horizontally before it hits the p
    11·1 answer
  • A pitcher exerts 100.0 N of force on a ball with a velocity of 45 m/s. What is the pitcher's power?
    7·1 answer
  • Maggie is a member of her school’s environmental club and is interested in recycling. She asks the question, “How does exposure
    13·1 answer
  • Please helpppp meee 20 pts<br> Identify the arrows that show the correct direction of heat transfer.
    5·2 answers
  • If a person is driving a speed of 162 km and drive for 35 seconds. How far will they drive?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!