Answer:
As b ∝ (L/r²) and
the distance of the sun from the earth is 0.00001581 light years
and
the distance of the Sirius from the earth is 8.6 light years
hence,
the Sun appear brighter in the sky
Explanation:
The brightness (b) is directly proportional to the Luminosity of the star (L) and inversely proportional to the square of the distance between the star and the observer (r).
thus, mathematically,
b ∝ (L/r²)
now,
given
L for sirius is 23 times more than the sun i.e 23L
now,
the distance of the sun from the earth is 0.00001581 light years
and
the distance of the Sirius from the earth is 8.6 light years
thus,
using the the relation between conclude that the value of brightness for the Sirius comes very very low as compared to the value for brightness for the Sun.
hence, the sun appears brighter
Answer:
A
Explanation:
I only think its A because of the gravity part...sorry im not good at explaining
Answer:
you count the squares or messure it
Explanation:
you can raw equal squares about 1 cm wide if possible all equal and count the squares eg theres 10 squares (small hand) so that would be 10cm squared
"<span>The image would be upside down, would look as tall as you, and would be at the same distance from the mirror as you are" is the type of image among the choices given in the question that would be projected. The correct option among all the options that are given in the question is the first option. I hope it helps you.</span>
Answer:
k1 + k2
Explanation:
Spring 1 has spring constant k1
Spring 2 has spring constant k2
After being applied by the same force, it is clearly mentioned that spring are extended by the same amount i.e. extension of spring 1 is equal to extension of spring 2.
x1 = x2
Since the force exerted to each spring might be different, let's assume F1 for spring 1 and F2 for spring 2. Hence the equations of spring constant for both springs are
k1 = F1/x -> F1 =k1*x
k2 = F2/x -> F2 =k2*x
While F = F1 + F2
Substitute equation of F1 and F2 into the equation of sum of forces
F = F1 + F2
F = k1*x + k2*x
= x(k1 + k2)
Note that this is applicable because both spring have the same extension of x (I repeat, EXTENTION, not length of the spring)
Considering the general equation of spring forces (Hooke's Law) F = kx,
The effective spring constant for the system is k1 + k2