Answer: 4 s
Explanation:
Given
The applied force is 70 N
mass of the rock is 28 kg
initial velocity 
final velocity 
Deceleration provided by force is

using the equation of motion

The answer is D because instantaneous means at a particular point in time
Answer:
The fraction of kinetic energy lost in the collision in term of the initial energy is 0.49.
Explanation:
As the final and initial velocities are known it is possible then the kinetic energy is possible to calculate for each instant.
By definition, the kinetic energy is:
k = 0.5*mV^2
Expressing the initial and final kinetic energy for cars A and B:


Since the masses are equals:

For the known velocities, the kinetics energies result:




The lost energy in the collision is the difference between the initial and final kinectic energies:


Finally the relation between the lost and the initial kinetic energy:


Answer:
Explanation:
Velocity of sound in air at 20 degree = 343 m/s
Velocity of sound in water at 20 degree = 1470 m/s
Time taken in to and fro movement in air
=( 2 x 10) / 343 = 0.0583 s
Rest of the time is
.171 - .0583 = .1127 s
This time is taken to cover distance in water. If d be the depth of lake
2d / velocity = time taken
2 d / 1470 = .1127
d = 82.83 m
Electromagnet is in form of solenoid
and the magnetic field due to solenoid is given as

here
i = current in the loop
so when we increase the current in electromagnet the magnetic field of the solenoid will increase
this will increase the strength of the electromagnet
so the answer would be
<em>INCREASE</em>