Q3. (a) 0m/s, as they are asking for initial velocit.
(b)(i) The paper has a large surface area or weighs less than the coin,thus,falls smoothly.
(ii)The coin has more mass than the paper.
(c) They fall at the same acceleration and hit the bottom at the same time.
Their mass doesn't matter in the vacuum.
Answer:
Shown by explanation;
Explanation:
The heat of the sample = mass ×specific heat capacity of the sample × temperature change(∆T)
Assumption;I assume the mass of the samples are : 109g and 192g
∆T= 30.1-21=8.9°c.
The heat of the samples are for 109g are:
0.109 × 4186 × 8.9 =4060.84J
For 0.192g are;
∆T= 67-30.1-=36.9°c
0.192 × 4186×36.9=29656.97J
The answer is: [C]: "elasticity" .
________________________________________
I think its Coulomb's law<span>
</span>
The answer is A
Materials that are good conductors of thermal energy are called thermal conductors. Metals are very good thermal conductors. Materials that are poor conductors of thermal energy are called thermal insulators. Gases such as air and materials such as plastic and wood are thermal insulators