<u>The possible formulas for impulse are as follows:</u>
J = FΔt
J = mΔv
J = Δp
Answer: Option A, E and F
<u>Explanation:</u>
The quantity which explains the consequences of a overall force acting on an object (moving force) is known as impulse. It is symbolised as J. When the average overall force acting on an object than such products are formed and in given duration than the start fraction force over change in time end fraction J = FΔt.
The impulse-momentum theorem explains that the variation in momentum of an object is same as the impulse applied to it: J = Δp J = mΔv if mass is constant J = m dv + v dm if mass changes. Logically, the impulse-momentum theorem is equivalent to Newton second laws of motion which is also called as force law.
<h2>
Answer:</h2>
(a) 3.96 x 10⁵C
(b) 4.752 x 10⁶ J
<h2>
Explanation:</h2>
(a) The given charge (Q) is 110 A·h (ampere hour)
Converting this to A·s (ampere second) gives the number of coulombs the charge represents. This is done as follows;
=> Q = 110A·h
=> Q = 110 x 1A x 1h [1 hour = 3600 seconds]
=> Q = 110 x A x 3600s
=> Q = 396000A·s
=> Q = 3.96 x 10⁵A·s = 3.96 x 10⁵C
Therefore, the number of coulombs of charge is 3.96 x 10⁵C
(b) The energy (E) involved in the process is given by;
E = Q x V -----------------(i)
Where;
Q = magnitude of the charge = 3.96 x 10⁵C
V = electric potential = 12V
Substitute these values into equation (i) as follows;
E = 3.96 x 10⁵ x 12
E = 47.52 x 10⁵ J
E = 4.752 x 10⁶ J
Therefore, the amount of energy involved is 4.752 x 10⁶ J
Answer:
The two methods will yield different results as one is subject to experimental errors that us the Archimedes method of measurement, the the density measurement method will be more accurate
Explanation:
This is because the density method using the calculated volume will huve room for less errors that's occur in practical method i.e Archimedes method due to human error
Explanation:
Newton's second law shows that there is a direct relation ship between force and acceleration . the grater force that is applied on a object of given mass the more the accelerate. for example doubling the force in the object doubles it's acceleration.