I believe the atomic level increases hope this helps.
When reversing a given reaction, we simply change the sign of the standard enthalpy change value. Therefore, the reaction will become:
H₂O → H₂ + 0.5O₂, ΔH = 286kJ
This is because if a certain amount of energy is released when a reaction occurs, the same amount of energy must be supplied for the reaction to occur in the reverse direction.
This is a incomplete question. The complete question is:
It takes 348 kJ/mol to break a carbon-carbon single bond. Calculate the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon. Round your answer to correct number of significant digits
Answer: 344 nm
Explanation:
E= energy = 348kJ= 348000 J (1kJ=1000J)
N = avogadro's number = 
h = Planck's constant = 
c = speed of light = 

Thus the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon is 344 nm
I need help to cause it asked me that questions