Answer:
Reagents: 1)
2)
, 
Mechanism: Hydroboration
Explanation:
In this case, we have a <u>hydration of alkene</u>s reaction. But, in this example, we have an <u>anti-Markovnikov reaction</u>. In other words, the "OH" is added in the least substituted carbon. Therefore we have to choose an anti-Markovnikov reaction: <u>"hydroboration"</u>.
The <u>first step</u> of this reaction is the addition of borane (
) to the double bond. Then in the <u>second step</u>, we have the deprotonation of the hydrogen peroxide, to obtain the peroxide anion. In the <u>third step</u>, the peroxide anion attacks the molecule produced in the first step to produce a complex compound in which we have a bond "
". In <u>step number 4</u> we have the migration of the C-B bond to oxygen. Then in <u>step number 5</u>, we have the attack of
on the
to produce an alkoxide. Finally, the water molecule produce in step 2 will <u>protonate</u> the molecule to produce the alcohol.
See figure 1
I hope it helps!
Answer:
See explanation
Explanation:
Matter may exist in three phases; solid, liquid and gas. The state in which matter exists depends on the extent of intermolecular forces operating in the substance.
In solid particles, the molecules that compose the solid are close together because the molecules of a solid do not move from place to place but they continue to vibrate about their fixed position.
For liquids, the molecules that compose a liquid are in random motion but are less energetic than molecules of a gas.
In gases, the molecules are not held together at all. The molecules of a gas have the highest degree of freedom. They move from one point another at a high velocity.
Hence, the order of increasing degree of movement of the particles in different states of matter = solids<liquids< gases.
Solids have well arranged particles, the molecules of a liquid are a little more disorderly than liquid particles while gas particles are the most disorderly of all the states of matter.
1) You need to get volume of both temperatures by using first attached formula V= Mass/Density

2) Using the second formula you get the height of 0 degree

(radius in cm is

3) Then with h1 you can easily get the height of 25 degrees
Subtract 943.5 cm - 939.2 cm, and obtain a rise in mercury height of 4.3 cm
Data:
V1 = 6.7 liter
T1 = 23° = 23 + 273.15 K = 300.15 K
P1 = 0.98 atm
V2 = 2.7 liter
T2 = 125° = 125 + 273.15 K = 398.15 K
P2 = ?
Formula:
Combined law of ideal gases: P1 V1 / T1 = P2 V2 / T2
=> P2 = P1 V1 T2 / (T1 V2)
P2 = 0.98 atm * 6.7 liter * 398.15 K / (300.15K * 2.7 liter)
P2 = 3.22 atm