The answer is low frequency and long wavelength
Answer:
All of the above processes have a ΔS < 0.
Explanation:
ΔS represents change in entropy of a system. Entropy refers to the degree of disorderliness of a system.
The question requests us to identify the process that has a negative change of entropy.
carbon dioxide(g) → carbon dioxide(s)
There is a change in state from gas to solid. Solid particles are more ordered than gas particles so this is a negative change in entropy.
water freezes
There is a change in state from liquid to solid. Solid particles are more ordered than liquid particles so this is a negative change in entropy.
propanol (g, at 555 K) → propanol (g, at 400 K)
Temperature is directly proportional to entropy, this means higher temperature leads t higher entropy.
This reaction highlights a drop in temperature which means a negative change in entropy.
methyl alcohol condenses
Condensation is the change in state from gas to liquid. Liquid particles are more ordered than gas particles so this is a negative change in entropy.
The addition of heat energy to a
system always causes the temperature of that system to increase. This is always
true because you are adding heat of a substance to increase its temperature. For example, you are going
to drink a cup of coffee. And you wanted it hot to boost your attention. So you
have to use hot water. In order for your water to become hot or warm, you need
boil it in a kettle. Note that you are going to use an electric stove. The
electric stove gets it energy from the source giving it a hotter temperature to
the water in the kettle. You are applying heat energy to warm the water. So,
the statement is true.
even tho the guy copied the answer its true neon can form a compound
The mass of water that contains 2.5×10²⁴ atoms of Hydrogen is 74.79 g
<h3>Avogadro's hypothesis </h3>
From Avogadro's hypothesis,
6.02×10²³ atoms = 2 g of H
Therefore,
2.5×10²⁴ atoms = (2.5×10²⁴ × 2) / 6.02×10²³
2.5×10²⁴ atoms = 8.31 g of H
<h3>How to determine the mass of water </h3>
- 1 mole of water H₂O = (2×1) + 16 = 18 g
- Mass of H in 1 mole of water = 2 g
2 g of H is present in 18 g of water.
Therefore,
8.31 g of H will be present in = (8.31 × 18) / 2 = 74.79 g of water.
Thus, 2.5×10²⁴ atoms of Hydrogen is present in 74.79 g of water.
Learn more about Avogadro's number:
brainly.com/question/26141731