Explanation:
The attached figure shows data for the cart speed, distance and time.
For low fan speed,
Distance, d = 500 cm
Time, t = 7.4 s
Average velocity,

Acceleration,

For medium fan speed,
Distance, d = 500 cm
Time, t = 6.4 s
Average velocity,

Acceleration,

For high fan speed,
Distance, d = 500 cm
Time, t = 5.6 s
Average velocity,

Acceleration,

Hence, this is the required solution.
As ball is projected up in air at an angle of 45 degree without any air resistance
Let the initial speed will be v
now we will have
In x direction

in y direction

now displacement in x direction

displacement in y direction

now from above two equations we have


so above equation is a quadratic equation and hence it will be a parabolic curve
so correct answer will be
<em>C. parabolic curve.</em>
Answer:
x = 1.6 + 1.7 t^2 omitting signs
a) at t = 0 x = 1.6 m
b) V = d x / d t = 3.4 t
at t = 0 V = 0
c) A = d^2 x / d t^2 = 3.4 (at t = 0 A = 3.4 m/s^2)
d) x = 1.6 + 1.7 * (4.4)^2 = 34.5 (position at 4.4 sec = 34.5 m)
Answer: See the explanation below.
Explanation: For this assignment, I chose to display how eclipses are created.
My model was made utilizing a 3D displaying device program for all intents and purposes. The items utilized are three models I made for this presentation, Earth, the moon, and the sun. These three models will be utilized for the showcase.
The light that shines from the sun would create a shadow on the moon. The moon would then catch the light that should've arrived on Earth, making the shadow we call an eclipse. Earth gets a shadow of the moon and the remainder of Earth is lit up from the rest of the light, making an eclipse.
The individual I demonstrated my project to was [<em>Someone you know</em>], [<em>Pronoun</em>] said it precisely took after the occasion of an eclipse. The light from the sun being shined on to the moon rather than the Earth, creating the shadow we call an eclipse.
According to Newton laws of motion,
F = m*a
Here, m = 1,560 Kg
a = 1.30 m/s²
Substitute their values,
F = 1,560 * 1.30
F = 2028 N ~ 2030 N [ Closest value ]
In short, Your Answer would be Option C
Hope this helps!