Answer:
Φ = 361872 N.m^2 / C
Explanation:
Given:-
- The area of the two plates, 
- The charge on each plate, 
- Permittivity of free space, 
- The radius for the flux region, 
- The angle between normal to region and perpendicular to plates, θ = 4°
Find:-
Find the flux (in N · m2/C) through a circle of radius 3.3 cm between the plates.
Solution:-
- First we will determine the area of the region ( Ar ) by using the formula for the area of a circle as follows. The region has a radius of r = 3.3 cm:

- The charge density ( σ ) would be considered to be uniform for both plates. It is expressed as the ratio of the charge ( q ) on each plate and its area ( A_p ):
σ = 
σ = 0.00094 C / m^2
- We will assume the electric field due to the positive charged plate ( E+ ) / negative charged plate ( E- ) to be equivalent to the electric field ( E ) of an infinitely large charged plate with uniform charge density.

- The electric field experienced by a region between two infinitely long charged plates with uniform charge density is the resultant effect of both plates. So from the principle of super-position we have the following net uniform electric field ( E_net ) between the two plates:

- From the Gauss-Law the flux ( Φ ) through a region under uniform electric field ( E_net ) at an angle of ( θ ) is:
Φ = E_net * Ar * cos ( θ )
Φ = (106214689.26553) * (0.00342) * cos ( 5 )
Φ = 361872 N.m^2 / C