Answer:
50 N
Explanation:
Let the force in the horizontal rope be F₁ and the force in the diagonal rope be F₂:
The total force in the horizontal and vertical directions must be zero, since the object is at rest and is not accelerating.
The horizontal component of the forces:
F₁ + F₂ = -40N + F₂ = 0
F₂ = 40N
The vertical component of the forces:
F₁ + F₂ - mg = 0 + F₂ - mg = 0
F₂ = mg
If I assume the gravitational constant g = 10 m/s²:
F₂ = (3 kg) * (10 m/s²) = 30N
Adding the horizontal and vertical components of the force F₂:
F₂ = √((40N)² + (30N)²) = 50N
Answer:
The hummingbird travels the total distance is 10 m
Explanation:
Given that,
A hummingbird flies forward and backward.
According to figure,
We know that,
The total distance is equal to the sum of all distance.
Forward direction is positive and backward direction is negative.
We need to calculate the hummingbird travels the total distance
Using figure,

Put the value into the formula


Hence, The hummingbird travels the total distance is 10 m.
Answer:
Time taken, 
Explanation:
It is given that, a small metal ball is suspended from the ceiling by a thread of negligible mass. The ball is then set in motion in a horizontal circle so that the thread’s trajectory describes a cone as shown in attached figure.
From the figure,
The sum of forces in y direction is :


Sum of forces in x direction,

.............(1)
Also, 
Equation (1) becomes :

...............(2)
Let t is the time taken for the ball to rotate once around the axis. It is given by :

Put the value of T from equation (2) to the above expression:


On solving above equation :

Hence, this is the required solution.
Answer:
1.73 m/s²
Explanation:
Given:
Δx = 250 m
v₀ = 0 m/s
t = 17 s
Find: a
Δx = v₀ t + ½ at²
250 m = (0 m/s) (17 s) + ½ a (17 s)²
a = 1.73 m/s²