Answer:
A) 3.6 cm
Explanation:
Accuracy comes down to how precisely you can read the length on a given scale. Here since the smallest increment is centimeter, we can go only one decimal beyond to estimate. This is because you can usually estimate to only one decimal place beyond the closest marks on any measuring.
So, the answer should be 3.6 cm.
Here's a document that explains it well: https://www.auburn.wednet.edu/cms/lib03/WA01001938/Centricity/Domain/1360/1_Uncertainty.pdf
Hope that's right!
Answer:
Mass of Ag produced = 64.6 g
Note: the question is, how many grams of Ag is produced from 19.0 g of Cu and 125 g of AgNO3
Explanation:
Equation of the reaction:
Cu + 2AgNO3 ---> 2Ag + Cu(NO3)2
From the equation above, 1 mole of Cu reacts with 2 moles of AgNO3 to produce 2 moles of Ag and 1 mole of Cu(NO3)2.
Molar mass of the reactants and products are; Cu = 63.5 g/mol, Ag = 108 g/mol, AgNO3 = 170 g/mol, Cu(NO3)2 = 187.5 g/mol
To determine, the limiting reactant;
63.5 g of Cu reacts with 170 * 2 g of AgNO3,
19 g of Cu will react with (340 * 19)/63.5 g of AgNO3 =101.7 g of AgNO3.
Since there are 125 g of AgNO3 available for reaction, it is in excess and Cu is the limiting reactant.
63.5 g of Cu reacts to produce 108 * 2 g of Ag,
19 g of Cu will react to produce (216 * 19)/63.5 g of Ag = 64.6 g of Ag.
Therefore mass of Ag produced = 64.6g
Answer:
The molar concentration of Cu²⁺ in the initial solution is 6.964x10⁻⁴ M.
Explanation:
The first step to solving this problem is calculating the number of moles of Cu(NO₃)₂ added to the solution:

n = 1.375x10⁻⁵ mol
The second step is relating the number of moles to the signal. We know the the n calculated before is equivalent to a signal increase of 19.9 units (45.1-25.2):
1.375x10⁻⁵ mol _________ 19.9 units
x _________ 25.2 units
x = 1.741x10⁻⁵mol
Finally, we can calculate the Cu²⁺ concentration :
C = 1.741x10⁻⁵mol / 0.025 L
C = 6.964x10⁻⁴ M
oxidation-reduction reactions are -
- 2C3H6(g) + 9O2(g) → 6CO2(g) + 6H2O(g)
- Fe2O3(s) + 3CO(g) → 2Fe(l) + 3CO2(g)
For reaction,
- 2C3H6(g) + 9O2(g) → 6CO2(g) + 6H2O(g)
<u>On reactant side</u>:
Oxidation state of Carbon = +2
Oxidation state of Oxygen = 0
<u>On product side:</u>
Oxidation state of Carbon = +4
Oxidation state of Oxygen = -2
Here, carbon's oxidation state is rising from +2 to +4. As a result, it is oxidizing and the oxygen's oxidation state is decreasing from 0 to -2. As a result, it is decreasing.
For reaction,
Fe2O3(s) + 3CO(g) → 2Fe(l) + 3CO2(g)
<u>When reacting:</u>
Iron's oxidation state is +3.
Carbon's oxidation state is +2.
<u>On product side:</u>
Iron's oxidation state is zero.
Carbon's oxidation state is +4.
Here, carbon's oxidation state is rising from +2 to +4. As a result, it is being oxidized and the iron's oxidation state is changing from +3 to 0. As a result, it is decreasing.
To learn more about oxidation-reduction from given link
brainly.com/question/5794822
#SPJ4