Answer:
Electronegativity difference between 2 atoms
Explanation:
1. If the electronegativity difference (usually called ΔEN) is less than 0.5, then the bond is nonpolar covalent.
2. If the ΔEN is between 0.5 and 1.6, the bond is considered polar covalent
3. If the ΔEN is greater than 2.0, then the bond is ionic.
Answer:
4.22 × 10 ⁻²² mol
Explanation:
Given data:
Number of molecules of bromine = 254 molecules
Number of moles = ?
Solution:
1 mole = 6.02 × 10 ²³ molecules
254 molecules × 1 mol / 6.02 × 10 ²³ molecules
42.2 × 10 ⁻²³ mol
4.22 × 10 ⁻²² mol
Answer:
The concentration of
is 1.48 ×
M
The absolute uncertainty of
is ±0.12 ×
M
The concentration of
is written as 1.48(±0.12) ×
M
Explanation:
The pH of a solution is given by the formula below
pH = ![-log_{10}[{H^{+}]](https://tex.z-dn.net/?f=-log_%7B10%7D%5B%7BH%5E%7B%2B%7D%5D)
∴ ![[H^{+}] = 10^{-pH}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%2010%5E%7B-pH%7D)
where
is the
concentration
From the question,
pH = 8.83±0.04
That is,
pH =8.83 and the uncertainty is ±0.04
First, we will determine
from
![[H^{+}] = 10^{-pH}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%2010%5E%7B-pH%7D)
![[{H^{+}] = 10^{-8.83}](https://tex.z-dn.net/?f=%5B%7BH%5E%7B%2B%7D%5D%20%3D%2010%5E%7B-8.83%7D)
×
M
×
M
The concentration of
is 1.48 ×
M
The uncertainty of
(
) from the equation
is
×
× 
Where
is the uncertainty of
is the uncertainty of the pH
Hence,
= 2.303 × 1.4791 ×
× 0.04
= 1.36 ×
M
= 0.12 ×
M
Hence, the absolute uncertainty of
is ±0.12 ×
M
Answer:
The particles in most solids are closely packed together. Even though the particles are locked into place and cannot move or slide past each other, they still vibrate a tiny bit. ... However, ice is different from most solids: its molecules are less densely packed than in liquid water. This is why ice floats.
Explanation:
The Nobel gasses
Excluding those, the most active are the lower left and upper right.So the least
active (EXCLUDING GROUP 18) are the non- metals furthest form the upper right