Answer:
The answer to your question is: letter D
Explanation:
In a combustion reaction, the reactants are always a molecule with Carbon that reacts with oxygen and the products are carbon dioxide and water.
According to the explanation, the only possible solution is:
a) C₆H₁₂O₂(l) ⇒ 6 C(s) + 6 H₂(g) + O₂(g)
b) Mg(s) + C₆H₁₂O₂(l) ⇒ MgC₆H₁₂O₂(aq)
c) 6 C(s) + 6 H₂(g) + O₂(g) ⇒ C₆H₁₂O₂(l)
d) C₆H₁₂O₂(l) + 8 O₂(g) ⇒ 6 CO₂(g) + 6 H₂O(g)
e) None of the above represent the combustion of C₆H₁₂O₂.
The change is called melting
A is the answer im pretty sure
Considering the ideal gas law, a sample weighing 9.49 g occupies 68.67 L at 353 K and 2.00 atm.
Ideal gases are a simplification of real gases that is done to study them more easily. It is considered to be formed by point particles, do not interact with each other and move randomly. It is also considered that the molecules of an ideal gas, in themselves, do not occupy any volume.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P× V = n× R× T
In this case, you know:
- P= 2 atm
- V= ?
- n=
being 2g/mole the molar mass of H2, that is, the amount of mass that a substance contains in one mole. - R= 0.082

- T= 353 K
Replacing:
2 atm× V = 4.745 moles× 0.082
× 353 K
Solving:
V = (4.745 moles× 0.082
× 353 K)÷ 2 atm
<u><em>V= 68.67 L</em></u>
Finally, a sample weighing 9.49 g occupies 68.67 L at 353 K and 2.00 atm.
Learn more: