Answer:
The answer is below
Explanation:
The practical considerations you might encounter when you increase the moment of inertia (I) while keeping the cross-sectional area fixed are:
1. Shapes of moment of inertia: Engineers should consider or know the different shapes of moment of inertia for different shape
2. Understanding the orientation of the beam: this will allow engineers to either increase or decrease the moment of inertia of a beam without increasing its cross sectional area.
Answer:
The volume percentage of graphite is 10.197 per cent.
Explanation:
The volume percent of graphite is the ratio of the volume occupied by the graphite phase to the volume occupied by the graphite and ferrite phases. The weight percent in the cast iron is 3.2 wt% (graphite) and 96.8 wt% (ferrite). The volume percentage of graphite is:

Where:
- Volume occupied by the graphite phase, measured in cubic centimeters.
- Volume occupied by the graphite phase, measured in cubic centimeters.
The expression is expanded by using the definition of density and subsequently simplified:

Where:
,
- Masses of the ferrite and graphite phases, measured in grams.
- Densities of the ferrite and graphite phases, measured in grams per cubic centimeter.


If
,
,
and
, the volume percentage of graphite is:


The volume percentage of graphite is 10.197 per cent.
Answer:
One inlet stream to the mixer flows at 100.0 kg/hr and is 35wt% species-A and 65wt% species-B.
Explanation:
150
A
Explanation:
V
s
V
p
=
N
s
N
p
(
1
)
N
refers to the number of turns
V
is voltage
s
and
p
refer to the secondary and primary coil.
From the conservation of energy we get:
V
p
I
p
=
V
s
I
s
(
2
)
From
(
1
)
:
V
s
V
p
=
900
00
3
00
=
300
∴
V
s
=
300
V
p
Substituting for
V
s
into
(
2
)
⇒
V
p
I
p
=
300
V
p
×
0.5
∴
I
p
=
150
A
Seems a big current.