1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zmey [24]
3 years ago
5

A vehicle experiences hard shifting. Technician A says that the bell housing may be misaligned. Technician B says that incorrect

oil may have been put in the transmission. Who is correct? Group of answer choices
Engineering
1 answer:
uysha [10]3 years ago
5 0

Answer:

Technician B

Explanation:

Vehicle hard shifting is a situation whereby the vehicle faces difficulty or shakes when changing gears/speed.

Actually technician B is correct, the primary reason for hard shifting is low level of transmission fluid, hard shifts can also be caused by excessive line pressure due to a clog or malfunctioning shift solenoid.

You might be interested in
Two streams of air enter a control volume: stream 1 enters at a rate of 0.05 kg / s at 300 kPa and 380 K, while stream 2 enters
alex41 [277]

Answer:

0.08kg/s

Explanation:

For this problem you must use 2 equations, the first is the continuity equation that indicates that all the mass flows that enter is equal to those that leave the system, there you have the first equation.

The second equation is obtained using the first law of thermodynamics that indicates that all the energies that enter a system are the same that come out, you must take into account the heat flows, work and mass flows of each state, as well as their enthalpies found with the temperature.

 

finally you use the two previous equations to make a system and find the mass flows

I attached procedure

5 0
3 years ago
A 132mm diameter solid circular section​
Ganezh [65]

Answer:

not sure if this helps but

5 0
3 years ago
Railroad tracks made of 1025 steel are to be laid during the time of year when the temperature averages 4C (40F). Of a joint spa
DENIUS [597]

Answer:

41.5° C

Explanation:

Given data :

1025 steel

Temperature = 4°C

allowed joint space = 5.4 mm

length of rails = 11.9 m

<u>Determine the highest possible temperature </u>

coefficient of thermal expansion ( ∝ ) = 12.1 * 10^-6 /°C

Applying thermal strain ( Δl / l )  = ∝ * ΔT

                                    ( 5.4 * 10^-3 / 11.9 )  = 12.1 * 10^-6 * ( T2 - 4 )

∴  ( T2 - 4 ) =  ( 5.4 * 10^-3 / 11.9 ) / 12.1 * 10^-6

hence : T2 = 41.5°C

8 0
3 years ago
A 50 mm diameter shaft is subjected to a static axial load of 160 kN. If the yield stress of the material is 350 MPa, the ultima
zvonat [6]

In order to develop this problem it is necessary to take into account the concepts related to fatigue and compression effort and Goodman equation, i.e, an equation that can be used to quantify the interaction of mean and alternating stresses on the fatigue life of a materia.

With the given data we can proceed to calculate the compression stress:

\sigma_c = \frac{P}{A}

\sigma_c = \frac{160*10^3}{\pi/4*0.05^2}

\sigma_c = 81.5MPa

Through Goodman's equations the combined effort by fatigue and compression is expressed as:

\frac{\sigma_a}{S_e}+\frac{\sigma_c}{\sigma_u}=\frac{1}{Fs}

Where,

\sigma_a=Fatigue limit for comined alternating and mean stress

S_e =Fatigue Limit

\sigma_c=Mean stress (due to static load)

\sigma_u = Ultimate tensile stress

Fs =Security Factor

We can replace the values and assume a security factor of 1, then

\frac{\sigma_a}{320}+\frac{81.5}{400}=\frac{1}{1}

Re-arrenge for \sigma_a

\sigma_a = 254.8Mpa

We know that the stress is representing as,

\sigma_a = \frac{M_c}{I}

Then,

Where M_c=Max Moment

I= Intertia

The inertia for this object is

I=\frac{\pi d^4}{64}

Then replacing and re-arrenge for M_c

M_c = \frac{\sigma_a*\pi*d^3}{32}

M_c = \frac{260.9*10^6*\pi*0.05^3}{32}

M_c = 3201.7N.m

Thereforethe moment that can be applied to this shaft so that fatigue does not occur is 3.2kNm

5 0
4 years ago
Two flat plates, separated by a space of 4 mm, are moving relative to each other at a velocity of 5 m/sec. The space between the
xenn [34]

Answer:

0.008

Explanation:

From the question, the parameters given are:

Velocity V = 5 m/s

Pressure = 10 pa

But pressure = F/A

10 = F/A

F = 10A

Substitute all the parameters into the formula below

Coefficient of viscosity (η) = F × r /[AV]

Where

F = tangential force,

r = distance between layers,

A = Area, and

V = velocity

(η) = 10A × 0.004 /[A × 5]

The A will cancel out

(η) = 10 × 0.004 /[5]

(η) = 0.04 /5

(η) = 0.008

Therefore, the coefficient of viscosity of the fluid is 0.008

5 0
3 years ago
Other questions:
  • In C++ the declaration of floating point variables starts with the type name float or double, followed by the name of the variab
    14·1 answer
  • How can you evaluate whether the slope of the dependent variable with an independent variable is the same for each level of the
    13·1 answer
  • What is differences Between hard shoulder &amp; soft shoulder in civil Engineerin?
    9·1 answer
  • Which of the following do pumps provide to a fluid power system?
    8·1 answer
  • Use the overall heat-transfer resistance presented by the external air and the glass itself to determine the heat flux in W/m2 i
    10·1 answer
  • Write multiple if statements
    5·1 answer
  • Is a unit of measurement for angles
    15·1 answer
  • Your local hospital is considering the following solution options to address the issues of congestion and equipment failures at
    6·1 answer
  • ASAP correct answer plss When you are driving, if you see this traffic sign it means
    8·1 answer
  • What do you mean by decentralization??​
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!