1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lera25 [3.4K]
3 years ago
14

It’s the 18th century and you are responsible for artillery. Victory hangs in the balance and it all depends on you making a goo

d shot towards the enemy fortress. Thankfully, your physics class gave you all the tools to calculate projectile trajectories. Your cannon launches a cannonball at an initial speed of 100 m/s and you set the angle at 53 degrees from the horizontal. Calculate (a) how far from the fortress should you position your cannon in order to hit it at its foundation?; and (b) how far from the fortress should you position your cannon in order to hit it at its top height (10 m) in order to knock it down? (g = 9.8 m/s^2)

Physics
1 answer:
sweet [91]3 years ago
7 0

Answer:

a) You should position the cannon at 981 m from the wall.

b) You could position the cannon either at 975 m or 7.8 m (not recomended).

Explanation:

Please see the attached figure for a graphical description of the problem.

In a parabolic motion, the position of the flying object is given by the vector position:

r =( x0 + v0 t cos α ; y0 + v0 t sin α + 1/2 g t²)

where:

r = position vector

x0 = initial horizontal position

v0 = module of the initial velocity vector

α = angle of lanching

y0 = initial vertical position

t = time

g = gravity acceleration (-9.8 m/s²)

The vector "r" can be expressed as a sum of vectors:

r = rx + ry

where

rx = ( x0 + v0 t cos α ; 0)

ry = (0 ; y0 + v0 t sin α + 1/2 g t²)

rx and ry are the x-component and the y-component of "r" respectively (see figure).

a) We have to find the module of r1 in the figure. Note that the y-component of r1 is null.

r1 = ( x0 + v0 t cos α ; y0 + v0 t sin α + 1/2 g t²)

Knowing the the y-component is 0, we can obtain the time of flight of the cannon ball.

0 = y0 + v0 t sin α + 1/2 g t²

If the origin of the reference system is located where the cannon is, the y0 and x0 = 0.

0 = v0 t sin α + 1/2 g t²

0 = t (v0 sin α + 1/2 g t)         (we discard the solution t = 0)    

0 = v0 sin α + 1/2 g t

t = -2v0 sin α / g

t = -2 * 100 m/s * sin 53° / (-9.8 m/s²) = 16.3 s  

Now, we can obtain the x-component of r1 and its module will be the distance from the wall at which the cannon sould be placed:

x = x0 + v0 t cos α

x = 0 m + 100m/s * 16.3 s * cos 53

x = 981 m

The vector r1 can be written as:

r1 = (981 m ; 0)

The module of r1 will be: x = \sqrt{(981 m)^{2} + (0 m)^{2}}

<u>Then, the cannon should be placed 981 m from the wall.</u>

b) The procedure is the same as in point a) only that now the y-component of the vector r2 ( see figure) is not null:

r2y = (0 ; y0 + v0 t sin α + 1/2 g t² )

The module of this vector is 10 m, then, we can obtain the time and with that time we can calculate at which distance the cannon should be placed as in point a).

module of r2y = 10 m

10 m = v0 t sin α + 1/2 g t²

0 = 1/2 g t² + v0 t sin α - 10 m

Let´s replace with the data:

0 = 1/2 (-9.8 m/s² ) t² + 100 m/s * sin 53 * t - 10 m

0= -4.9 m/s² * t² + 79.9 m/s * t - 10 m

Solving the quadratic equation we obtain two values of "t"

t = 0.13 s and t = 16.2 s

Now, we can calculate the module of the vector r2x at each time:

r2x = ( x0 + v0 t cos α ; 0)

r2x = (0 m + 100m/s * 16.2 s * cos 53 ; 0)

r2x = (975 m; 0)

Module of r2x = 975 m

at t = 0.13 s

r2x = ( 0 m + 100m/s * 0.13 s * cos 53 ; 0)

r2x = (7.8 m ; 0)

module r2x = 7.8 m

You can place the cannon either at 975 m or at 7.8 m (see the red trajectory in the figure) although it could be dangerous to place it too close to the enemy fortress!

You might be interested in
A go-cart and rider have a mass of 14 kg. If the cart accelerates at 6m/s^2 during a 40 m sprint in 100 seconds, how much power
lara [203]

Answer:

P = 33.6 [N]

Explanation:

To solve this problem we must use Newton's second law, which tells us that the sum of forces on a body is equal to the product of mass by acceleration.

∑F = m*a

where:

F = forces [N]

m = mass = 14 [kg]

a = acceleration = 6 [m/s²]

F = 14*6\\F = 84 [N]

In the second part of this problem we must find the work done, where the work in physics is known as the product of force by distance, it is important to make it clear that force must be applied in the direction of movement.

W = F*d

where:

W = work [J]

F = force = 84 [N]

d = displaciment = 40 [m]

W = 84*40\\W = 3360 [J]

Finally, the power can be calculated by the relationship between the work performed in a given time interval.

P=W/t\\

where:

P = power [W]

W = work = 3360 [J]

t = time = 100 [s]

Now replacing:

P=3360/100\\P=33.6[W]

The power is given in watts

3 0
3 years ago
Heptane and water do not mix, and heptane has a lower density (0.684 g/mL) than water (1.00 g/mL). A graduated cylinder contains
lakkis [162]

Given that the density of heptane is

d_h=\frac{0.684g}{mL}

The mass of heptane is

m_h=31\text{ g}

The density of water is

d_w=\frac{1g}{mL}

The mass of water is

m_w=37\text{ g}

The volume of heptane will be

\begin{gathered} V_h=\frac{m_h}{d_h} \\ =\frac{31}{0.684} \\ =45.32\text{ mL} \end{gathered}

The volume of water will be

\begin{gathered} V_w=\frac{m_w}{d_w} \\ =\frac{37}{1} \\ =37\text{ mL} \end{gathered}

Thus, the volume of heptane is 45.32 mL and the volume of water is 37 mL.

The total volume of liquid in the cylinder will be

\begin{gathered} V=V_h+V_w \\ =45.32+37 \\ =82.32\text{ mL} \end{gathered}

The total volume of liquid in the cylinder will be 82.32 mL.

7 0
1 year ago
A perpetual-motion machine can never be built because it is not possible to eliminate...
bazaltina [42]
The answer is:  [C]:  "elasticity" .
________________________________________
4 0
3 years ago
Read 2 more answers
An object has an acceleration of 6.0 m/s/s. If the net force was doubled and the mass was one-third the original value, then the
alexandr402 [8]

Hahahahaha. Okay.

So basically , force is equal to mass into acceleration.

F=ma

so when F=ma , we get acceleration=6m/s/s

Force is doubled.

Mass is 1/3 times original.

2F=1/3ma

Now , we rearrange , and we get 6F=ma

So , now for 6 times the original force , we get 6 times the initial acceleration.

So new acceleration = 6*6= 36m/s/s

5 0
4 years ago
You are packing for a trip to another star. During the journey, you will be traveling at 0.99c. You are trying to decide whether
Elenna [48]

Answer:

Do neither of these things ( c )

Explanation:

For length contraction : Is calculated considering the observer moving at a speed that is relative the object at rest applying this formula

L = (l) \sqrt{1 -\frac{v^{2} }{c^{2} } }

where l = Measured distance from object at rest, L =  contracted measured in relation to the observer , v = speed of clock , c = speed of light

you will do neither of these things because before you can make such decisions who have to view the object in this case yourself from a different frame from where you are currently are, if not your length and width will not change hence you can't make such conclusions/decisions .

7 0
3 years ago
Other questions:
  • According to the third law of motion when we put an object, the object pushes back on us with an equal and opposite force. If th
    13·1 answer
  • Refraction occurs when light passing from one medium to another. True or False
    9·1 answer
  • How does water flowing over a waterfall involve both kinetic energy and potential energy?
    6·2 answers
  • First extinguish a match or candle by blasting it violently. Why?​
    12·1 answer
  • The cylindrical tub of a dryer in a laundromat rotates counterclockwise about a horizontal axis at 41.5 rev/min as it dries the
    5·1 answer
  • Diffraction supports the:<br><br> A. wave theory of light.<br><br> B. particle theory of light.
    15·2 answers
  • What is Gravity?<br>PLEASE ANSWER ​
    8·2 answers
  • a bus takes to reach from station A to station B and then 3 hour to return from station B to station A find the average velocity
    11·1 answer
  • Essay about why people should not join a gang 300 word​
    8·1 answer
  • 63 J of heat are added to a closed system. The initial energy of the system is 58J, and the final internal energy is 93J. How mu
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!